Synergistic effect in MMT-dispersed Au/TiO2 monolithic nanocatalyst for plasmon-absorption and metallic interband transitions dynamic CO2 photo-reduction to CO
Tài liệu tham khảo
Kiatphuengporn, 2017, Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor, J. Clean. Prod., 142, 1222, 10.1016/j.jclepro.2016.08.086
Yang, 2016, Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective, Nanoscale Horiz., 1, 185, 10.1039/C5NH00113G
Yu, 2015, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A, 3, 19936, 10.1039/C5TA05503B
He, 2016, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364, 416, 10.1016/j.apsusc.2015.12.163
Tahir, 2016, Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor, Chem. Eng. J., 285, 635, 10.1016/j.cej.2015.10.033
Xiong, 2017, Flame spray pyrolysis synthesized ZnO/CeO2 nanocomposites for enhanced CO2 photocatalytic reduction under UV–Vis light irradiation, J. CO2 Util., 18, 53, 10.1016/j.jcou.2017.01.013
Ahmad Beigi, 2014, Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation, J. CO2 Util., 7, 23, 10.1016/j.jcou.2014.06.003
Low, 2017, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093
Wang, 2013, Graphene–WO3 nanobelt composite: elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels, Catal. Commun., 38, 82, 10.1016/j.catcom.2013.04.020
He, 2015, High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst, Appl. Catal. B: Environ., 168–169, 1
Paulino, 2016, Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light, Appl. Catal. B: Environ., 185, 362, 10.1016/j.apcatb.2015.12.037
Tahir, 2016, Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts, Appl. Surf. Sci., 377, 244, 10.1016/j.apsusc.2016.03.141
Kameshima, 2009, Preparation and properties of TiO2/montmorillonite composites, Appl. Clay Sci., 45, 20, 10.1016/j.clay.2009.03.005
Bhattacharyya, 2008, Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study, Chem. Eng. J., 136, 1, 10.1016/j.cej.2007.03.005
Li, 2012, TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation, Chem. Eng. J., 191, 66, 10.1016/j.cej.2012.02.058
Liu, 2009, Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity, Appl. Clay Sci., 43, 156, 10.1016/j.clay.2008.07.016
Praus, 2011, CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide, J. Colloid Interface Sci., 360, 574, 10.1016/j.jcis.2011.05.004
Kočí, 2014, ZnS/MMT nanocomposites: the effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide, Appl. Catal. B: Environ., 158–159, 410, 10.1016/j.apcatb.2014.04.048
Tahir, 2013, Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites, Appl. Catal. B: Environ., 142–143, 512, 10.1016/j.apcatb.2013.05.054
Tahir, 2013, Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor, Chem. Eng. J., 230, 314, 10.1016/j.cej.2013.06.055
Tahir, 2015, Photocatalytic CO2 reduction by CH4 over montmorillonite modified TiO2 nanocomposites in a continuous monolith photoreactor, Mater. Res. Bull., 63, 13, 10.1016/j.materresbull.2014.11.042
Gui, 2015, One-pot synthesis of Ag-MWCNT@TiO2 core-shell nanocomposites for photocatalytic reduction of CO2 with water under visible light irradiation, Chem. Eng. J., 278, 272, 10.1016/j.cej.2014.09.022
Kwak, 2015, Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient, Fuel, 143, 570, 10.1016/j.fuel.2014.11.066
Lashgari, 2017, Photocatalytic back-conversion of CO2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: artificial photosynthesis, J. CO2 Util., 18, 89, 10.1016/j.jcou.2017.01.017
Chen, 2016, Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts, Phys. Chem. Chem. Phys., 18, 4942, 10.1039/C5CP06999H
Adekoya, 2017, g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light, J. CO2 Util., 18, 261, 10.1016/j.jcou.2017.02.004
Li, 2016, Ag-loading on brookite TiO2 quasi nanocubes with exposed {210} and {001} facets: activity and selectivity of CO2 photoreduction to CO/CH4, Appl. Catal. B: Environ., 180, 130, 10.1016/j.apcatb.2015.06.022
Tahir, 2017, Photo-induced CO2 reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO2 nanocatalyst, Int. J. Hydrogen Energy, 42, 15507, 10.1016/j.ijhydene.2017.05.039
Tahir, 2015, Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor, Appl. Surf. Sci., 338, 1, 10.1016/j.apsusc.2015.02.126
Tahir, 2015, Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation, Appl. Surf. Sci., 356, 1289, 10.1016/j.apsusc.2015.08.231
Liu, 2015, A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol, Mater. Res. Bull., 68, 203, 10.1016/j.materresbull.2015.03.064
Abou Asi, 2013, Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites, Catal. Today, 216, 268, 10.1016/j.cattod.2013.05.021
Tahir, 2017, Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO2 NWs core/shell hetero-junction under UV and visible light, J. CO2 Util., 18, 250, 10.1016/j.jcou.2017.02.002
Hou, 2011, Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions, ACS Catal., 1, 929, 10.1021/cs2001434
Gołąbiewska, 2016, The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2, Appl. Catal. B: Environ., 196, 27, 10.1016/j.apcatb.2016.05.013
Jovic, 2013, Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol–water mixtures, J. Catal., 305, 307, 10.1016/j.jcat.2013.05.031
Tahir, 2017, Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels, Appl. Catal. B: Environ., 204, 548, 10.1016/j.apcatb.2016.11.062
Wang, 2014, Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion, Chem. Soc. Rev., 43, 7188, 10.1039/C4CS00145A
Ding, 2017, Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2, Appl. Catal. B: Environ., 202, 314, 10.1016/j.apcatb.2016.09.038
Qin, 2011, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts, J. Colloid Interface Sci., 356, 257, 10.1016/j.jcis.2010.12.034
Chen, 2013, Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts, Chem. Eng. J., 230, 506, 10.1016/j.cej.2013.06.119
Ola, 2012, Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation, Appl. Catal. B: Environ., 126, 172, 10.1016/j.apcatb.2012.07.024
Taboada, 2014, Dynamic photocatalytic hydrogen production from ethanol–water mixtures in an optical fiber honeycomb reactor loaded with Au/TiO2, J. Catal., 309, 460, 10.1016/j.jcat.2013.10.025
Wang, 2013, Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor, Energy Convers. Manage., 65, 299, 10.1016/j.enconman.2012.08.021
Yuan, 2014, Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights, Energy Convers. Manage., 81, 98, 10.1016/j.enconman.2014.02.027
Tahir, 2016, Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts, Appl. Surf. Sci., 377, 244, 10.1016/j.apsusc.2016.03.141
Ola, 2016, Synthesis, characterization and visible light photocatalytic activity of metal based TiO2 monoliths for CO2 reduction, Chem. Eng. J., 283, 1244, 10.1016/j.cej.2015.07.090
Tahir, 2016, Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst, Appl. Surf. Sci., 389, 46, 10.1016/j.apsusc.2016.06.155
Lim, 2014, Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells, RSC Adv., 4, 38111, 10.1039/C4RA05689B
Luna, 2016, Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production, Appl. Catal. B: Environ., 191, 18, 10.1016/j.apcatb.2016.03.008
Tahir, 2015, Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation, Appl. Surf. Sci., 356, 1289, 10.1016/j.apsusc.2015.08.231
Vaiano, 2016, Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts, Appl. Catal. B: Environ., 188, 134, 10.1016/j.apcatb.2016.02.001
Bera, 2016, Size-dependent plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2, Appl. Catal. B: Environ., 199, 55, 10.1016/j.apcatb.2016.06.025
Okuno, 2016, Photocatalytic properties of Au-deposited mesoporous SiO2–TiO2 photocatalyst under simultaneous irradiation of UV and visible light, J. Solid State Chem., 235, 132, 10.1016/j.jssc.2015.12.025
Mei, 2013, Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO2 to hydrocarbons, J. Catal., 306, 184, 10.1016/j.jcat.2013.06.027
Murdoch, 2011, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nat. Chem., 3, 489, 10.1038/nchem.1048
Fu, 2017, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system, Appl. Catal. B: Environ., 202, 430, 10.1016/j.apcatb.2016.09.051
Tahir, 2015, Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor, Appl. Catal. A: Gen., 493, 90, 10.1016/j.apcata.2014.12.053
Rather, 2017, A C3N4 surface passivated highly photoactive Au-TiO2 tubular nanostructure for the efficient H2 production from water under sunlight irradiation, Appl. Catal. B: Environ., 213, 9, 10.1016/j.apcatb.2017.05.002
Kim, 2015, Efficient visible light-induced H2 production by Au@CdS/TiO2 nanofibers: synergistic effect of core–shell structured Au@CdS and densely packed TiO2 nanoparticles, Appl. Catal. B: Environ., 166–167, 423, 10.1016/j.apcatb.2014.11.036