Synergistic effect in MMT-dispersed Au/TiO2 monolithic nanocatalyst for plasmon-absorption and metallic interband transitions dynamic CO2 photo-reduction to CO

Applied Catalysis B: Environmental - Tập 219 - Trang 329-343 - 2017
Muhammad Tahir1,2
1Chemical Reaction Engineering Group (CREG), Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Johor, Malaysia
2Department of Chemical Engineering, COMSATS Institue of Information Technology, Lahore, Pakistan

Tài liệu tham khảo

Kiatphuengporn, 2017, Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor, J. Clean. Prod., 142, 1222, 10.1016/j.jclepro.2016.08.086 Yang, 2016, Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective, Nanoscale Horiz., 1, 185, 10.1039/C5NH00113G Yu, 2015, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A, 3, 19936, 10.1039/C5TA05503B He, 2016, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364, 416, 10.1016/j.apsusc.2015.12.163 Tahir, 2016, Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor, Chem. Eng. J., 285, 635, 10.1016/j.cej.2015.10.033 Xiong, 2017, Flame spray pyrolysis synthesized ZnO/CeO2 nanocomposites for enhanced CO2 photocatalytic reduction under UV–Vis light irradiation, J. CO2 Util., 18, 53, 10.1016/j.jcou.2017.01.013 Ahmad Beigi, 2014, Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation, J. CO2 Util., 7, 23, 10.1016/j.jcou.2014.06.003 Low, 2017, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093 Wang, 2013, Graphene–WO3 nanobelt composite: elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels, Catal. Commun., 38, 82, 10.1016/j.catcom.2013.04.020 He, 2015, High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst, Appl. Catal. B: Environ., 168–169, 1 Paulino, 2016, Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light, Appl. Catal. B: Environ., 185, 362, 10.1016/j.apcatb.2015.12.037 Tahir, 2016, Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts, Appl. Surf. Sci., 377, 244, 10.1016/j.apsusc.2016.03.141 Kameshima, 2009, Preparation and properties of TiO2/montmorillonite composites, Appl. Clay Sci., 45, 20, 10.1016/j.clay.2009.03.005 Bhattacharyya, 2008, Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study, Chem. Eng. J., 136, 1, 10.1016/j.cej.2007.03.005 Li, 2012, TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation, Chem. Eng. J., 191, 66, 10.1016/j.cej.2012.02.058 Liu, 2009, Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity, Appl. Clay Sci., 43, 156, 10.1016/j.clay.2008.07.016 Praus, 2011, CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide, J. Colloid Interface Sci., 360, 574, 10.1016/j.jcis.2011.05.004 Kočí, 2014, ZnS/MMT nanocomposites: the effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide, Appl. Catal. B: Environ., 158–159, 410, 10.1016/j.apcatb.2014.04.048 Tahir, 2013, Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites, Appl. Catal. B: Environ., 142–143, 512, 10.1016/j.apcatb.2013.05.054 Tahir, 2013, Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor, Chem. Eng. J., 230, 314, 10.1016/j.cej.2013.06.055 Tahir, 2015, Photocatalytic CO2 reduction by CH4 over montmorillonite modified TiO2 nanocomposites in a continuous monolith photoreactor, Mater. Res. Bull., 63, 13, 10.1016/j.materresbull.2014.11.042 Gui, 2015, One-pot synthesis of Ag-MWCNT@TiO2 core-shell nanocomposites for photocatalytic reduction of CO2 with water under visible light irradiation, Chem. Eng. J., 278, 272, 10.1016/j.cej.2014.09.022 Kwak, 2015, Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient, Fuel, 143, 570, 10.1016/j.fuel.2014.11.066 Lashgari, 2017, Photocatalytic back-conversion of CO2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: artificial photosynthesis, J. CO2 Util., 18, 89, 10.1016/j.jcou.2017.01.017 Chen, 2016, Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts, Phys. Chem. Chem. Phys., 18, 4942, 10.1039/C5CP06999H Adekoya, 2017, g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light, J. CO2 Util., 18, 261, 10.1016/j.jcou.2017.02.004 Li, 2016, Ag-loading on brookite TiO2 quasi nanocubes with exposed {210} and {001} facets: activity and selectivity of CO2 photoreduction to CO/CH4, Appl. Catal. B: Environ., 180, 130, 10.1016/j.apcatb.2015.06.022 Tahir, 2017, Photo-induced CO2 reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO2 nanocatalyst, Int. J. Hydrogen Energy, 42, 15507, 10.1016/j.ijhydene.2017.05.039 Tahir, 2015, Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor, Appl. Surf. Sci., 338, 1, 10.1016/j.apsusc.2015.02.126 Tahir, 2015, Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation, Appl. Surf. Sci., 356, 1289, 10.1016/j.apsusc.2015.08.231 Liu, 2015, A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol, Mater. Res. Bull., 68, 203, 10.1016/j.materresbull.2015.03.064 Abou Asi, 2013, Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites, Catal. Today, 216, 268, 10.1016/j.cattod.2013.05.021 Tahir, 2017, Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO2 NWs core/shell hetero-junction under UV and visible light, J. CO2 Util., 18, 250, 10.1016/j.jcou.2017.02.002 Hou, 2011, Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions, ACS Catal., 1, 929, 10.1021/cs2001434 Gołąbiewska, 2016, The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2, Appl. Catal. B: Environ., 196, 27, 10.1016/j.apcatb.2016.05.013 Jovic, 2013, Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol–water mixtures, J. Catal., 305, 307, 10.1016/j.jcat.2013.05.031 Tahir, 2017, Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels, Appl. Catal. B: Environ., 204, 548, 10.1016/j.apcatb.2016.11.062 Wang, 2014, Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion, Chem. Soc. Rev., 43, 7188, 10.1039/C4CS00145A Ding, 2017, Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2, Appl. Catal. B: Environ., 202, 314, 10.1016/j.apcatb.2016.09.038 Qin, 2011, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts, J. Colloid Interface Sci., 356, 257, 10.1016/j.jcis.2010.12.034 Chen, 2013, Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts, Chem. Eng. J., 230, 506, 10.1016/j.cej.2013.06.119 Ola, 2012, Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation, Appl. Catal. B: Environ., 126, 172, 10.1016/j.apcatb.2012.07.024 Taboada, 2014, Dynamic photocatalytic hydrogen production from ethanol–water mixtures in an optical fiber honeycomb reactor loaded with Au/TiO2, J. Catal., 309, 460, 10.1016/j.jcat.2013.10.025 Wang, 2013, Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor, Energy Convers. Manage., 65, 299, 10.1016/j.enconman.2012.08.021 Yuan, 2014, Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights, Energy Convers. Manage., 81, 98, 10.1016/j.enconman.2014.02.027 Tahir, 2016, Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts, Appl. Surf. Sci., 377, 244, 10.1016/j.apsusc.2016.03.141 Ola, 2016, Synthesis, characterization and visible light photocatalytic activity of metal based TiO2 monoliths for CO2 reduction, Chem. Eng. J., 283, 1244, 10.1016/j.cej.2015.07.090 Tahir, 2016, Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst, Appl. Surf. Sci., 389, 46, 10.1016/j.apsusc.2016.06.155 Lim, 2014, Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells, RSC Adv., 4, 38111, 10.1039/C4RA05689B Luna, 2016, Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production, Appl. Catal. B: Environ., 191, 18, 10.1016/j.apcatb.2016.03.008 Tahir, 2015, Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation, Appl. Surf. Sci., 356, 1289, 10.1016/j.apsusc.2015.08.231 Vaiano, 2016, Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts, Appl. Catal. B: Environ., 188, 134, 10.1016/j.apcatb.2016.02.001 Bera, 2016, Size-dependent plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2, Appl. Catal. B: Environ., 199, 55, 10.1016/j.apcatb.2016.06.025 Okuno, 2016, Photocatalytic properties of Au-deposited mesoporous SiO2–TiO2 photocatalyst under simultaneous irradiation of UV and visible light, J. Solid State Chem., 235, 132, 10.1016/j.jssc.2015.12.025 Mei, 2013, Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO2 to hydrocarbons, J. Catal., 306, 184, 10.1016/j.jcat.2013.06.027 Murdoch, 2011, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nat. Chem., 3, 489, 10.1038/nchem.1048 Fu, 2017, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system, Appl. Catal. B: Environ., 202, 430, 10.1016/j.apcatb.2016.09.051 Tahir, 2015, Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor, Appl. Catal. A: Gen., 493, 90, 10.1016/j.apcata.2014.12.053 Rather, 2017, A C3N4 surface passivated highly photoactive Au-TiO2 tubular nanostructure for the efficient H2 production from water under sunlight irradiation, Appl. Catal. B: Environ., 213, 9, 10.1016/j.apcatb.2017.05.002 Kim, 2015, Efficient visible light-induced H2 production by Au@CdS/TiO2 nanofibers: synergistic effect of core–shell structured Au@CdS and densely packed TiO2 nanoparticles, Appl. Catal. B: Environ., 166–167, 423, 10.1016/j.apcatb.2014.11.036