Synergistic Effects of External Electric Field and Solvent Vapor Annealing with Different Polarities to Enhance β-Phase and Carrier Mobility of the Poly(9,9-dioctylfluorene) Films

Chemical Research in Chinese Universities - Tập 36 - Trang 1310-1319 - 2020
Tengning Ma1, Ningning Song2, Jing Qiu1, Hao Zhang1, Dan Lu1
1State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China
2National Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, P. R. China

Tóm tắt

In this work, the synergistic effects of external electric field(EEF) and solvent vapor annealing to enhance β-phase and carrier mobility of poly(9,9-dioctylfluorene)(PFO) films were investigated. It is found that EEF can promote the PFO β-phase conformation transition and orientate the PFO chains along the EEF direction with the assistance of polar solvent vapor annealing. PFO chain orderness is closely related to the solvent polarity. In particular, the β-phase content in the annealed film of strong polar chloroform vapor increases from 18.7% to 34.9% after EEF treatment. Meanwhile a characteristic needle-like crystal is formed in the film, as a result, the hole mobility is enhanced by an order of magnitude. The mechanism can be attributed to the fast polarization of solvent dipole under the action of EEF, thus forming a driving force that greatly facilitates the orientation of PFO dipole unit. Research also reveals that EEF driving of the PFO chains does not occur with an insoluble solvent vapor since the solvent molecules cannot swell the film, thus there is insufficient free volume for PFO chains to adjust their conformation. This research enriches the understanding of the relationship between solvent vapor annealing and EEF in orientation polymers, and this method is simple and controlled, and capable of integrating into large-area thin film process, which provides new insights to manufacture low-cost and highly ordered polymer films, and is of great significance to enhance carrier mobility and efficiency of photoelectric devices based on polymer condensed matter physics.

Tài liệu tham khảo

Subbiah J., Purushothaman B., Chen M., Qin T., Gao M., Vak D., Scholes F. H., Chen X., Watkins S. E., Wilson G. J., Holmes A. B., Wong W. W. H., Jones D. J., Adv. Mater., 2015, 27, 702 Liao S. H., Jhuo H. J., Yeh P. N., Cheng Y. S., Li Y. L., Lee Y. H., Sharma S., Chen S. A., Sci. Rep., 2014, 4, 6813 Kim N. K., Jang S. Y., Pace G., Caironi M., Park W. T., Khim D., Kim J., Kim D. Y., Noh Y. Y., Chem. Mater., 2015, 27, 8345 Herguth P., Jiang X., Liu M. S., Jen A. K. Y., Macromolecules, 2002, 35, 6094 Shu C. F., Dodda R., Wu F. I., Liu M. S., Jen A. K. Y., Macromolecules, 2003, 36, 6698 Xia C., Advincula R. C., Macromolecules, 2001, 34, 5854 Chen S. H., Su A. C., Su C. H., Chen S. A., Macromolecules, 2005, 38, 379 Chunwaschirasiri W., Tanto B., Huber D. L., Winokur M. J., Phys. Rev. Lett., 2005, 94, 107402 Bradley D. D., Grell M., Long X., Mellor H., Grice A. W., Inbasekaran M., Woo E. P., Proc. SPIE, 1997, 3145, 254 Winokur M. J., Slinker J., Huber D. L, Phys. Rev. B, 2003, 67, 184106 Lin Z. Q., Shi N. E., Li Y. B., Qiu D., Zhang L., Lin J. Y., Zhao J. F., Wang C., Xie L. H., Huang W., J. Phys. Chem. C, 2011, 115, 4418 Justino L. L. G., Ramos M. L., Knaapila M., Marques A. T., Kudla C. J., Scherf U., Almásy L., Schweins R., Burrows H. D., Macromolecules, 2015, 44, 334 Chen J. H., Chang C. S., Chang Y. X., Chen C. Y., Chen H. L., Chen S. A., Macromolecules, 2009, 42, 1306 Cadby A. J., Lane P. A., Mellor H., Martin S. J., Grell M., Giebeler C., Bradley D. D. C., Wohlgenannt M., An C., Vardeny Z. V., Phys. Rev. B, 2000, 62, 15604 Lu H. H., Liu C. Y., Chang C. H., Chen S. A., Adv. Mater., 2007, 19, 2574 Asada K., Kobayashi T., Naito H., Jpn. J. Appl. Phys., 2006, 45, 247 Becker K., Lupton J. M., J. Am. Chem. Soc., 2005, 127, 7306 Wohlgenannt M., Jiang X. M., Vardeny Z. V., Janssen R. A., Phys. Rev. Lett., 2002, 88, 197401 Prins P., Grozema F., Nehls B., Farrell T., Scherf U., Siebbeles L., Phys. Rev. B, 2006, 74, 113203 Jen T. H., Wang K. K., Chen S. A., Polymer, 2012, 53, 5850 Whitehead K. S., Grell M., Bradley D. D. C., Jandke M., Strohriegl P., Appl. Phys. Lett., 2000, 76, 2946 Redecker M., Bradley D. D. C., Inbasekaran M., Woo E. P., Appl. Phys. Lett., 1999, 74, 1400 Peet J., Brocker E., Xu Y., Bazan G. C., Adv. Mater., 2008, 20, 1882 Li X., Bai Z., Liu B., Li T., Lu D., J. Phys. Chem. C, 2017, 121, 14443 Khan A. L. T., Sreearunothai P., Herz L. M., Banach M. J., Köhler A., Phys. Rev. B, 2004, 69, 085201 Chen J. Y., Wu H. C., Chiu Y. C., Lin C. J., Tung S. H., Chen W. C., Adv. Electron. Mater., 2015, 1, 1400028 Xi Y., Pozzo L. D., Soft Matter, 2017, 13, 3894 Ma T., Song N., Liu B., Ren J., Zhang H., Lu D., J. Phys. Chem. C, 2019, 123, 13993 Böker A., Elbs H., Hänsel H., Knoll A., Ludwigs S., Zettl H., Zvelindovsky A. V., Sevink G. J. A., Urban V., Abetz V., Müller A. H. E., Krausch G., Macromolecules, 2003, 36, 8078 Ye Z., Yang X., Cui H., Qiu F., J. Mater. Chem. C, 2014, 2, 6773 Wang S., Chen Z., Umar A., Wang Y., Yin P. G., RSC Adv., 2015, 5, 58499 Hao X. T., Chan N. Y., Dunstan D. E., Smith T. A., J. Phys. Chem. C, 2009, 113, 11657 Hui J., Hou Y., Shi Q., Meng X., Feng T., Solid State Commun., 2006, 555 Lin C. C., Lin Y. Y., Li S. S., Yu C. C., Huang C. L., Lee S. H., Du C. H., Lee J. J., Chen H. L., Chen C. W., Energy Environ. Sci., 2011, 4, 2134 Lee S. W., Kim C. H., Lee S. G., Jeong J. H., Choi J. H., Lee E. S., Electron. Mater. Lett., 2013, 9, 471 Solanki A., Wu B., Salim T., Yeow E. K. L., Lam Y. M., Sum T. C., J. Phys. Chem. C, 2014, 118, 11285 Solanki A., Bagui A., Long G., Wu B., Salim T., Chen Y., Lam Y. M., Sum T. C., ACS Appl. Mater. Interfaces, 2016, 8, 32282 Zhao C. X., Wang X., Zeng W., Chen Z. K., Ong B. S., Wang K., Deng L., Xu G., Appl. Phys. Lett., 2011, 99, 053305 Caruso M. E., Anni M., Phys. Rev. B, 2007, 76, 054207 Yang H., Qu K., Li H., Cheng H., Zhang J., Macromol. Chem. Phys., 2016, 217, 1579 Zhang G., Zhang P., Hu D., Chen H., Guo T. A., IEEE Trans. Electron Devices, 2018, 65, 1101 Knaapila M., Bright D. W., Stepanyan R., Torkkeli M., Almasy L., Schweins R., Vainio U., Preis E., Galbrecht F., Scherf U., Monkman A. P., Phys. Rev. E, 2011, 83, 051803 Caruso M. E., Lattante S., Cingolani R., Anni M., Appl. Phys. Lett., 2006, 88, 181906 Azuma H., Asada K., Kobayashi T., Naito H., Thin Solid Films, 2006, 509, 182 Bai Z., Liu Y., Li T., Li X., Liu B., Liu B., Lu D., J. Phys. Chem. C, 2016, 120, 27820 Knaapila M., Monkman A. P., Adv. Mater., 2013, 25, 1090 Knaapila M., Garamus V. M., Dias F. B., Almásy L., Galbrecht F., Charas A., Morgado J., Burrows H. D., Scherf U., Monkman A. P., Macromolecules, 2006, 39, 6505 Ibnaouf K. H., Synthetic Metals, 2015, 209, 534 Perevedentsev A., Chander N., Kim J. S., Bradley D. D. C., J. Polym. Sci., Part B: Polym. Phys., 2016, 54, 1995 Eggimann H. J., Le Roux F., Herz L. M., J. Phys. Chem. Lett., 2019, 10, 1729 Zhou W., Shi J., Lv L., Chen L., Chen Y. A., Phys. Chem. Chem. Phys., 2014, 17, 387 Botiz I., Stingelin N., Materials, 2014, 7, 2273 Yoann O., Dorota N., Vincent L., Wojciech P., Klaus M., Unsal K., Reynolds J. R., Roberto L., JérôMe C., David B., Adv. Mater., 2014, 26, 2119 Ariu M., Lidzey D. G., Lavrentiev M., Bradley D. D. C., Jandke M., Strohriegl P. A., Synth. Met., 2001, 116, 217 Lukaszczuk P., Borowiak-Palen E., Rümmeli M. H., Kalenczuk R. J., Phys. Status Solidi, 2010, 246, 2699 Ariu M., Lidzey D. G., Bradley D. D. C., Synthetic Metals, 2000, 111, 607 Yu M. N., Soleimaninejad H., Lin J. Y., Zuo Z. Y., Liu B., Bo Y. F., Bai L. B., Han Y. M., Smith T. A., Xu M., Wu X. P., Dunstan D. E., Xia R. D., Xie L. H., Bradley D. D. C., Huang W., J. Phys. Chem. Lett., 2018, 9, 364 Volz C., Arif M., Guha S., J. Chem. Phys., 2007, 126, 064905 Arif M., Volz C., Guha S., Phys. Rev. Lett., 2006, 96, 025503 Liu C., Wang Q., Tian H., Liu J., Geng Y., Yan D., Macromolecules, 2013, 46, 3025 Skrypnychuk V., Wetzelaer G. J. A. H., Gordiichuk P. I., Mannsfeld S. C. B., Herrmann A., Toney M. F., Barbero D. R., Adv. Mater., 2016, 28, 2359 Hu W. S., Weng S. Z., Tao Y. T., Liu H. J., Lee H. Y., Org. Electron., 2008, 9, 385 Aryal M., Trivedi K., Hu W., ACS Nano, 2009, 3, 3085