Synergistic Effects of Carbon Nanotubes (CNTs) and White Graphite (h-BN) on the Microstructure and Mechanical Properties of Aluminum Matrix Composites

Muhammad Awais Khan1, Atteeq Uz Zaman1, Khurram Imran Khan1, Muhammad Ramzan Abdul Karim1, Azhar Hussain2, Ehsan Ul Haq3
1Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Pakistan
2Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila, 47050, Pakistan
3Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bhoi, N.K.; Singh, H.; Pratap, S.: Developments in the aluminum metal matrix composites reinforced by micro/nano particles—A review. J. Compos. Mater. 54(6), 813–833 (2020). https://doi.org/10.1177/0021998319865307

Sharma, D.K.; Mahant, D.; Upadhyay, G.: Manufacturing of metal matrix composites: a state of review. Mater. Today Proc. 26, 506–519 (2019). https://doi.org/10.1016/j.matpr.2019.12.128

Sahin, Y.; Murphy, S.: The effect of fibre orientation of the dry sliding wear of borsic-reinforced 2014 aluminium alloy. J. Mater. Sci. 31(20), 5399–5407 (1996). https://doi.org/10.1007/BF01159309

Hanumanth, G.S.; Irons, G.A.: Particle incorporation by melt stirring for the production of metal-matrix composites. J. Mater. Sci. 28(9), 2459–2465 (1993). https://doi.org/10.1007/BF01151680

K. K. Chawla, 2012 “Metal Matrix Composites,” Compos. Mater., doi: https://doi.org/10.1007/978-0-387-74365-3_6.

Koli, D.K.; Agnihotri, G.; Purohit, R.: Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Mater. Today Proc. 2(4–5), 3032–3041 (2015). https://doi.org/10.1016/J.MATPR.2015.07.290

Hussain, G.; Hashemi, R.; Hashemi, H.; Al-Ghamdi, K.A.: An experimental study on multi-pass friction stir processing of Al/TiN composite: some microstructural, mechanical, and wear characteristics. Int. J. Adv. Manuf. Technol. 84(1–4), 533–546 (2016). https://doi.org/10.1007/S00170-015-7504-5/METRICS

Firestein, K.L., et al.: Fabrication, characterization, and mechanical properties of spark plasma sintered Al-BN nanoparticle composites. Mater. Sci. Eng. A 642, 104–112 (2015). https://doi.org/10.1016/j.msea.2015.06.059

Mohanavel, V.; Ravichandran, M.: Experimental investigation on mechanical properties of AA7075-AlN composites. Mater. Test. 61(6), 554–558 (2019). https://doi.org/10.3139/120.111354/MACHINEREADABLECITATION/RIS

A. U. Zaman et al.: Tape Casting and Characterization of h-BN / PU Composite Coatings for Corrosion Resistance Applications. Dig. Man. Tech., 156–163 (2023). https://doi.org/10.37256/dmt.3220233092

Penchal Reddy, M., et al.: Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles. J. Alloys Compd. 762, 398–408 (2018). https://doi.org/10.1016/J.JALLCOM.2018.05.205

Gostariani, R.; Ebrahimi, R.; Asadi, M.; Mohammad, A.; Paydar, H.: Mechanical properties of Al / BN nanocomposites fabricated by planetary ball milling and conventional hot extrusion. Acta Metall. Sin. English Lett. 31(3), 245–253 (2018). https://doi.org/10.1007/s40195-017-0640-1

Gopinath, S.; Prince, M.; Raghav, G.R.: Enhancing the mechanical, wear and corrosion behaviour of stir casted aluminium 6061 hybrid composites through the incorporation of boron nitride and aluminium oxide particles. Mater. Res. Express 7, 1 (2020). https://doi.org/10.1088/2053-1591/ab6c1d

Abdul Karim, M.R.; Khan, M.A.; Zaman, A.U.; Hussain, A.: Hexagonal boron nitride-based composites: an overview of processing approaches and mechanical properties. J. Korean Ceram. Soc. 2022, 1–23 (2022). https://doi.org/10.1007/S43207-022-00251-8

Bakshi, S.R.; Lahiri, D.; Agarwal, A.: Carbon nanotube reinforced metal matrix composites - a review. Int. Mater. Rev. 55(1), 41–64 (2013). https://doi.org/10.1179/095066009X12572530170543

Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. Rep. 74(10), 281–350 (2013). https://doi.org/10.1016/J.MSER.2013.08.001

Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998). https://doi.org/10.1103/PhysRevB.58.14013

Kwon, Y.K.; Kim, P.: Unusually high thermal conductivity in carbon nanotubes. High Therm. Conduct. Mater. (2006). https://doi.org/10.1007/0-387-25100-6_8/COVER

Dorri Moghadam, A.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review. Compos. Part B Eng. 77, 402–420 (2015). https://doi.org/10.1016/J.COMPOSITESB.2015.03.014

Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000). https://doi.org/10.1126/SCIENCE.287.5453.637/SUPPL_FILE/1046083C1.GIF

Bach, L.X.; Son, D.L.; Phong, M.T.; Thang, L.V.; Bian, M.Z.; Nam, N.D.: A study on Mg and AlN composite in microstructural and electrochemical characterizations of extruded aluminum alloy. Compos. Part B Eng. 156, 332–343 (2019). https://doi.org/10.1016/j.compositesb.2018.08.139

Vinayagam, M.: “Synthesis and evaluation on mechanical properties of LM4/AlN alloy based composites.” Energy Sources Part A Recover. Util. Environ. Eff. 44(1), 1888–1897 (2022). https://doi.org/10.1080/15567036.2019.1647313

Kumar, S.D.; Ravichandran, M.; Jeevika, A.; Stalin, B.; Kailasanathan, C.; Karthick, A.: Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram. Int. 47(9), 12951–12962 (2021). https://doi.org/10.1016/j.ceramint.2021.01.158

Vithal, D.N.; Krishna, B.B.; Krishna, G.M.: Microstructure, mechanical properties and fracture mechanisms of ZrB2 ceramic reinforced A7075 composites fabricated by stir casting. Mater. Today Commun. 25, 101289 (2020). https://doi.org/10.1016/j.mtcomm.2020.101289

Bandil, K., et al.: Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. J. Compos. Mater. 53(28–30), 4215–4223 (2019). https://doi.org/10.1177/0021998319856679

Rahman, M.H.; Al Rashed, H.M.M.: Characterization of silicon carbide reinforced aluminum matrix Composites. Procedia Eng. 90, 103–109 (2014). https://doi.org/10.1016/j.proeng.2014.11.821

James, S.J.; Ganesan, M.; Santhamoorthy, P.; Kuppan, P.: Development of hybrid aluminium metal matrix composite and study of property. Mater. Today Proc. 5(5), 13048–13054 (2018). https://doi.org/10.1016/j.matpr.2018.02.291

Pal, K.; Navin, K.; Kurchania, R.: Study of structural and mechanical behaviour of Al-ZrO2 metal matrix nanocomposites prepared by powder metallurgy method. Mater. Today Proc. 26, 2714–2719 (2019). https://doi.org/10.1016/j.matpr.2020.02.570

Ahmed, H.M.; Ahmed, H.A.; Hefni, M.; Moustafa, E.B.: Effect of grain refinement on the dynamic, mechanical properties, and corrosion behaviour of Al-Mg alloy. Metals 11(11), 1825 (2021)

Kaygısız, Y.; Kayan, D.B.: Effect of heat treatment on the mechanical properties and corrosion behaviour of Al–Si–Mg alloy systems. Phys. Met. Metallogr.Metallogr. 123(14), 1499–1508 (2022). https://doi.org/10.1134/S0031918X22100210

Boesl, B.; Lahiri, D.; Behdad, S.; Agarwal, A.: Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests. Carbon N. Y. 69, 79–85 (2014). https://doi.org/10.1016/j.carbon.2013.11.061

Pérez-Bustamante, R., et al.: Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 502(1–2), 159–163 (2009). https://doi.org/10.1016/j.msea.2008.10.047

He, C.N.; Zhao, N.Q.; Shi, C.S.; Song, S.Z.: Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 487(1–2), 258–262 (2009). https://doi.org/10.1016/j.jallcom.2009.07.099

Guo, B., et al.: Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater. Sci. Eng. A 698(May), 282–288 (2017). https://doi.org/10.1016/j.msea.2017.05.068

Zhang, X.; Li, S.; Pan, D.; Pan, B.; Kondoh, K.: Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Compos. Part A Appl. Sci. Manuf. 105, 87–96 (2018). https://doi.org/10.1016/j.compositesa.2017.11.013

Gostariani, R.; Ebrahimi, R.; Asadabad, M.A.; Paydar, M.H.: Mechanical properties of Al/BN nanocomposites fabricated by planetary ball milling and conventional hot extrusion. Acta Metall. Sin. English Lett. 31(3), 245–253 (2018). https://doi.org/10.1007/S40195-017-0640-1

Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci.. Mater. Sci. 46(1–2), 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

Pillari, L.K.; Umasankar, V.; Elamathi, P.; Chandrasekar, G.: Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Mater. Today Proc. 3(6), 2018–2026 (2016). https://doi.org/10.1016/J.MATPR.2016.04.104

Zhi Liao, J.; Tan, M.J.; Sridhar, I.: Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater. Des. 31(1), S96–S100 (2010). https://doi.org/10.1016/j.matdes.2009.10.022

Zhou, M., et al.: The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials (Basel) (2017). https://doi.org/10.3390/ma10121385

Yadav, V.; Harimkar, S.P.: Microstructure and properties of spark plasma sintered carbon nanotube reinforced aluminum matrix composites. Adv. Eng. Mater. 13(12), 1128–1134 (2011). https://doi.org/10.1002/adem.201100132

Şenel, M.C.; Gürbüz, M.: Synergistic effect of graphene/boron nitride binary nanoparticles on aluminum hybrid composite properties. Adv. Compos. Hybrid Mater. 4(4), 1248–1260 (2021). https://doi.org/10.1007/S42114-021-00209-0

Chen, B., et al.: Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon N. Y. 114, 198–208 (2017). https://doi.org/10.1016/j.carbon.2016.12.013

Guo, B.; Song, M.; Yi, J.; Ni, S.; Shen, T.; Du, Y.: Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater. Des. 120, 56–65 (2017). https://doi.org/10.1016/j.matdes.2017.01.096

Chen, B.; Kondoh, K.; Imai, H.; Umeda, J.; Takahashi, M.: Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr. Mater. 113, 158–162 (2016). https://doi.org/10.1016/j.scriptamat.2015.11.011

Deng, C.F.; Zhang, X.X.; Wang, D.Z.; Ma, Y.X.: Calorimetric study of carbon nanotubes and aluminum. Mater. Lett. 61(14–15), 3221–3223 (2007). https://doi.org/10.1016/j.matlet.2006.11.037

Ci, L.; Ryu, Z.; Jin-Phillipp, N.Y.; Rühle, M.: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. Mater. 54(20), 5367–5375 (2006). https://doi.org/10.1016/j.actamat.2006.06.031

Kuzumaki, T.; Miyazawa, K.; Ichinose, H.; Ito, K.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13(9), 2445–2449 (1998). https://doi.org/10.1557/JMR.1998.0340

Khalid, F.A.; Beffort, O.; Klotz, U.E.; Keller, B.A.; Gasser, P.; Vaucher, S.: Study of microstructure and interfaces in an aluminium–C60 composite material. Acta Mater. Mater. 51(15), 4575–4582 (2003). https://doi.org/10.1016/S1359-6454(03)00294-5

Paupler, P.; Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill, London (1961)

Kelly, A.; Tyson, W.R.: Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 13(6), 329–350 (1965). https://doi.org/10.1016/0022-5096(65)90035-9

Mokdad, F.; Chen, D.L.; Liu, Z.Y.; Xiao, B.L.; Ni, D.R.; Ma, Z.Y.: Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon N. Y. 104, 64–77 (2016). https://doi.org/10.1016/j.carbon.2016.03.038

George, R.; Kashyap, K.T.; Rahul, R.; Yamdagni, S.: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005). https://doi.org/10.1016/j.scriptamat.2005.07.022

Zhang, Z.; Chen, D.L.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54(7), 1321–1326 (2006). https://doi.org/10.1016/J.SCRIPTAMAT.2005.12.017

Lewandowski, J.J.; Liu, C.; Hunt, W.H.: Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater. Sci. Eng. A 107, 241–255 (1989). https://doi.org/10.1016/0921-5093(89)90392-4

Peng, H., et al.: Study of distribution of Carbon nanotube in Al-CNT nanocomposite synthesized via Spark-Plasma sintering. Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/338/1/012014

Chen, B.; Li, S.; Imai, H.; Jia, L.; Umeda, J.; Takahashi, M.: Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Compos. Sci. Technol. 113, 1–8 (2015). https://doi.org/10.1016/j.compscitech.2015.03.009

Noguchi, T.; Magario, A.; Fukazawa, S.; Shimizu, S.; Beppu, J.; Seki, M.: Carbon nanotube/aluminium composites with uniform dispersion. Mater. Trans. 45(2), 602–604 (2004). https://doi.org/10.2320/matertrans.45.602

Deng, C.; Zhang, X.; Ma, Y.; Wang, D.: Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Met. 26(5), 450–455 (2007). https://doi.org/10.1016/S1001-0521(07)60244-7