Synergetic modulation of power factor and thermal conductivity for Cu3SbSe4-based system

Materials Today Energy - Tập 18 - Trang 100491 - 2020
J.M. Li1,2, H.W. Ming1,2, C.J. Song1, L. Wang1, H.X. Xin1, Y.J. Gu3, J. Zhang1, X.Y. Qin1, D. Li1
1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2University of Science and Technology of China, Hefei, 230026, China
3School of Materials Science and Engineering, Henan University of Science and Technology, China

Tài liệu tham khảo

Minnich, 2009, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci., 2, 466, 10.1039/b822664b Pei, 2012, Band engineering of thermoelectric materials, Adv. Mater., 24, 6125, 10.1002/adma.201202919 Kim, 2013, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat. Mater., 12, 719, 10.1038/nmat3635 Li, 2013, Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures, J. Alloys Compd., 561, 105, 10.1016/j.jallcom.2013.01.131 Li, 2015, Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4, RSC Adv., 5, 31399, 10.1039/C5RA02030A Zhang, 2016, Improvement of thermoelectric properties of Cu3SbSe4 compound by in doping, Mater. Des., 98, 150, 10.1016/j.matdes.2016.03.001 Liu, 2017, Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators, J. Mater. Chem., 5, 2592, 10.1039/C6TA08467B Li, 2013, Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1-xSnxSe4-ySy with a high thermoelectric performance, CrystEngComm, 15, 7166, 10.1039/c3ce40956b Do, 2012, Physics of bandgap formation in Cu-Sb-Se based novel thermoelectrics: the role of Sb valency and Cu d levels, J. Phys. Condes. Matter, 24, 7 Zhu, 2017, Compromise and synergy in high-efficiency thermoelectric materials, Adv. Mater., 29, 10.1002/adma.201702816 Zhou, 2018, Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT, Nano Energy, 49, 221, 10.1016/j.nanoen.2018.04.035 Kumar, 2016, Effect of Zn substitution at a Cu site on the transport behavior and thermoelectric properties in Cu3SbSe4, RSC Adv., 6, 5528, 10.1039/C5RA21165D Wei, 2014, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap, J. Mater. Chem., 2, 13527, 10.1039/C4TA01957A Li, 2014, Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance, Dalton Trans., 43, 1888, 10.1039/C3DT52447G Zhu, 2017, Compromise and synergy in high-efficiency thermoelectric materials, Adv. Mater., 29, 10.1002/adma.201605884 Li, 2019, Realized high power factor and thermoelectric performance in Cu3SbSe4, Intermetallics, 109, 68, 10.1016/j.intermet.2019.03.009 Liu, 2015, Contrasting the role of Mg and Ba doping on the microstructure and thermoelectric properties of p-type AgSbSe2, ACS Appl. Mater. Interfaces, 7, 23047, 10.1021/acsami.5b06492 Guin, 2013, High thermoelectric performance in tellurium free p-type AgSbSe2, Energy Environ. Sci., 6, 2603, 10.1039/c3ee41935e Guin, 2014, Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping, RSC Adv., 4, 11811, 10.1039/c4ra00969j Li, 2015, High thermoelectric properties for Sn-doped AgSbSe2, J. Alloys Compd., 635, 87, 10.1016/j.jallcom.2014.11.081 Hytch, 1998, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, 74, 131, 10.1016/S0304-3991(98)00035-7 Zhang, 2019, Significant average ZT enhancement in Cu3SbSe4-based thermoelectric material via softening p-d hybridization, J. Mater. Chem., 7, 17648, 10.1039/C9TA05115E Zhang, 2016, Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with graphite nanosheets, Appl. Phys. Lett., 108, 5, 10.1063/1.4941999 Zhang, 2015, Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure, Adv. Funct. Mater., 25, 966, 10.1002/adfm.201402663 Kim, 2015, Characterization of Lorenz number with Seebeck coefficient measurement, Apl. Mater., 3, 5, 10.1063/1.4908244 Wojciechowski, 2009, Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system, Phys. Rev. B, 79, 7, 10.1103/PhysRevB.79.184202 Gao, 2018, Extraordinary thermoelectric performance realized in hierarchically structured AgSbSe2 with ultralow thermal conductivity, ACS Appl. Mater. Interfaces, 10, 18685, 10.1021/acsami.8b03243 Lei, 2019, High thermoelectric performance in Cu2Se superionic conductor with enhanced liquid-like behaviour by dispersing SiC, J. Mater. Chem., 7, 7006, 10.1039/C8TA12210E Guo, 2016, Thermoelectric transport properties of PbTe-based composites incorporated with Cu2Se nano-inclusions, J. Phys. Appl. Phys., 49 Luo, 2016, Progressive regulation of electrical and thermal transport properties to high-performance CuInTe2 thermoelectric materials, Adv. Energy Mater., 6, 10, 10.1002/aenm.201600007 Luo, 2017, Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X = S, Se), Nano Energy, 32, 80, 10.1016/j.nanoen.2016.12.023 Chang, 2017, Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping, Mater. Lett., 186, 227, 10.1016/j.matlet.2016.10.011 Kumar, 2018, Enhanced thermoelectric properties in Bi and Te doped p-type Cu3SbSe4 compound, vol. 1942 Rowe, 2005