Synchronizing Boolean networks asynchronously
Tài liệu tham khảo
Abou-Jaoudé, 2016, Logical modeling and dynamical analysis of cellular networks, Front. Genet., 7, 10.3389/fgene.2016.00094
Ahlswede, 2000, Network information flow, IEEE Trans. Inf. Theory, 46, 1204, 10.1109/18.850663
Aracena, 2008, Maximum number of fixed points in regulatory Boolean networks, Bull. Math. Biol., 70, 1398, 10.1007/s11538-008-9304-7
Aracena, 2004, Fixed points and maximal independent sets in AND-OR networks, Discrete Appl. Math., 138, 277, 10.1016/S0166-218X(03)00461-X
Aracena, 2017, Fixed points in conjunctive networks and maximal independent sets in graph contractions, J. Comput. Syst. Sci., 88, 143, 10.1016/j.jcss.2017.03.016
Aracena, 2021, Finding the fixed points of a boolean network from a positive feedback vertex set, Bioinformatics, 37, 1148, 10.1093/bioinformatics/btaa922
Aracena, 2020, Fixing monotone boolean networks asynchronously, Inf. Comput., 10.1016/j.ic.2020.104540
Bornholdt, 2008, Boolean network models of cellular regulation: prospects and limitations, J. R. Soc. Interface, 5, S85
Bridoux, 2022, Complexity of fixed point counting problems in boolean networks, J. Comput. Syst. Sci., 10.1016/j.jcss.2022.01.004
Burckel, 2014, Computation with no memory, and rearrangeable multicast networks, Discret. Math. Theor. Comput. Sci., 16, 121
Cameron, 2014, Computing in permutation groups without memory, Chic. J. Theor. Comput. Sci., 2014
Černỳ, 1964, Poznámka k homogénnym experimentom s konečnỳmi automatmi, Mat.-Fyz. Čas., 14, 208
Černỳ, 1971, On directable automata, Kybernetika, 7, 289
Colón-Reyes, 2005, Boolean monomial dynamical systems, Ann. Comb., 8, 425, 10.1007/s00026-004-0230-6
Gadouleau, 2016, Reduction and fixed points of boolean networks and linear network coding solvability, IEEE Trans. Inf. Theory, 62, 2504, 10.1109/TIT.2016.2544344
Gadouleau, 2015, Memoryless computation: new results, constructions, and extensions, Theor. Comput. Sci., 562, 129, 10.1016/j.tcs.2014.09.040
Goles, 2000, Dynamical behaviors of Kauffman networks with and-or gates, J. Biol. Syst., 8, 151, 10.1142/S0218339000000109
Harary, 1953, On the notion of balance of a signed graph, Mich. Math. J., 2, 143, 10.1307/mmj/1028989917
Hopfield, 1982, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA, 79, 2554, 10.1073/pnas.79.8.2554
Kauffman, 1969, Metabolic stability and epigenesis in randomly connected nets, J. Theor. Biol., 22, 437, 10.1016/0022-5193(69)90015-0
Kauffman, 1993
Kleitman, 1976, A lower bound on the length of a sequence containing all permutations as subsequences, J. Comb. Theory, Ser. A, 21, 129, 10.1016/0097-3165(76)90057-1
Le Novère, 2015, Quantitative and logic modelling of molecular and gene networks, Nat. Rev. Genet., 16, 146, 10.1038/nrg3885
Mac Culloch, 1943, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5, 113
McCuaig, 2004, Pólya's permanent problem, Electron. J. Comb., 11, 79, 10.37236/1832
Melkman, 2010, Determining a singleton attractor of an and/or boolean network in o (1.587 n) time, Inf. Process. Lett., 110, 565, 10.1016/j.ipl.2010.05.001
Garlet Millani
Richard, 2010, Negative circuits and sustained oscillations in asynchronous automata networks, Adv. Appl. Math., 44, 378, 10.1016/j.aam.2009.11.011
Richard, 2007, Necessary conditions for multistationarity in discrete dynamical systems, Discrete Appl. Math., 155, 2403, 10.1016/j.dam.2007.04.019
Richard, 2013, From kernels in directed graphs to fixed points and negative cycles in boolean networks, Discrete Appl. Math., 161, 1106, 10.1016/j.dam.2012.10.022
Robert, 1980, Iterations sur des ensembles finis et automates cellulaires contractants, Linear Algebra Appl., 29, 393, 10.1016/0024-3795(80)90251-7
Robertson, 1999, Permanents, pfaffian orientations, and even directed circuits, Ann. Math., 150, 929, 10.2307/121059
Thomas, 1973, Boolean formalization of genetic control circuits, J. Theor. Biol., 42, 563, 10.1016/0022-5193(73)90247-6
Thomas, 1990
Thomas, 2001, Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits, Chaos, Interdiscip. J. Nonlinear Sci., 11, 180, 10.1063/1.1349893
Thomas, 1991, Regulatory networks seen as asynchronous automata: a logical description, J. Theor. Biol., 153, 1, 10.1016/S0022-5193(05)80350-9
Veliz-Cuba, 2015, Dimension reduction of large sparse and-not network models, Electron. Notes Theor. Comput. Sci., 316, 83, 10.1016/j.entcs.2015.06.012
Veliz-Cuba, 2012, On the computation of fixed points in boolean networks, J. Appl. Math. Comput., 39, 145, 10.1007/s12190-011-0517-9
Volkov, 2008, Synchronizing automata and the černỳ conjecture, 11