Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation

Zhejiang University Press - Tập 19 Số 12 - Trang 889-903 - 2018
Fuqiang Wu1, Jun Ma1, Guodong Ren1
1Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anshan H, 1988. A study of the chaotic phenomena in Chua’s circuit. IEEE International Symposium on Circuits and Systems, p.273–276. https://doi.org/10.1109/ISCAS.1988.14919

Carroll TL, Pecora LM, 1993. Synchronizing nonautonomous chaotic circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10):646–650. https://doi.org/10.1109/82.246166

Chen S, Wang D, Li C, et al., 2004. Synchronizing strictfeedback chaotic system via a scalar driving signal. Chaos, 14(3):539–544. https://doi.org/10.1063/1.1749233

Cheng AL, Chen YY, 2017. Analyzing the synchronization of Rössler systems—when trigger-and-reinject is equally important as the spiral motio. Physics Letters A, 381(42):3641–3651. https://doi.org/10.1016/j.physleta.2017.09.042

de la Fraga LG, Tlelo-Cuautle E, 2014. Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators. Nonlinear Dynamics, 76(2):1503–1515. https://doi.org/10.1007/s11071-013-1224-x

Fixman M, 1984. Absorption by static traps: initial-value and steady-state problems. Journal of Chemical Physics, 81(8):3666–3677. https://doi.org/10.1063/1.448116

Friedman D, Strowbridge BW, 2003. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. Neurophysiology, 89(5):2601–2610. https://doi.org/10.1152/jn.00887.2002

Giordano R, Aloisio A, 2011. Fixed-latency, multi-gigabit serial links with Xilinx FPGAs. IEEE Transactions on Nuclear Science, 58(1):194–201. https://doi.org/10.1109/TNS.2010.2101083

Graubard K, Hartline DK, 1987. Full-wave rectification from a mixed electrical-chemical synapse. Science, 237(4814): 535–537. https://doi.org/10.1126/science.2885921

Györgyi L, Field RJ, 1992. A three-variable model of deterministic chaos in the Belousov-Zhabotinsky reaction. Nature, 355(6363):808–810. https://doi.org/10.1038/355808a0

Heagy JF, Carroll TL, Pecora LM, 1995. Desynchronization by periodic orbits. Physical Review E, 52(2):R1253–R1256. https://doi.org/10.1103/PhysRevE.52.R1253

Honein T, Chien N, Herrmann G, 1991. On conservation laws for dissipative systems. Physics Letters A, 155(4-5):223–224. https://doi.org/10.1016/0375-9601(91)90472-K

Hu G, Xiao J, Yang J, et al., 1997. Synchronization of spatiotemporal chaos and its applications. Physical Review E, 56(3):2738–2746. https://doi.org/10.1103/PhysRevE.56.2738

Hunt BR, Ott E, Yorke JA, 1997. Differentiable generalized synchronization of chaos. Physical Review E, 55(44): 4029–4034. https://doi.org/10.1103/PhysRevE.55.4029

Jin W, Lin Q, Wang A, et al., 2017. Computer simulation of noise effects of the neighborhood of stimulus threshold for a mathematical model of homeostatic regulation of sleep-wake cycles. Complexity, Article No. 4797545. https://doi.org/10.1155/2017/4797545

Lau FCM, Tse CK, 2003. Approximate-optimal detector for chaos communication systems. International Journal of Bifurcation and Chaos, 13(5):1329–1335. https://doi.org/10.1142/S0218127403007266

Li C, Chen L, Aihara K, 2008. Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks. Chaos, 18(2):23132. https://doi.org/10.1063/1.2939483

Lin W, He Y, 2005. Complete synchronization of the noiseperturbed Chua’s circuits. Chaos, 15(2):23705. https://doi.org/10.1063/1.1938627

Liu X, Ma G, Jiang X, et al., 2016. H8 stochastic synchronization for master-slave semi-Markovian switching system via sliding mode control. Complexity, 21(6):430–441. https://doi.org/10.1002/cplx.21702

Luo ACJ, Han RPS, 2000. The dynamics of stochastic and resonant layers in a periodically driven pendulum. Chaos Solitons & Fractals, 11(14):2349–2359. https://doi.org/10.1016/S0960-0779(99)00162-9

Luo ACJ, Min F, 2011. Synchronization dynamics of two different dynamical systems. Chaos Solitons & Fractals, 44(6):362–380. https://doi.org/10.1016/j.chaos.2010.12.011

Lv M, Wang C, Ren G, et al., 2016. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3):1479–1490. https://doi.org/10.1007/s11071-016-2773-6

Ma J, Li F, Huang L, et al., 2011. Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Communications in Nonlinear Science and Numerical Simulation, 16(9):3770–3785. https://doi.org/10.1016/j.cnsns.2010.12.030

Ma J, Wu F, Ren G, et al., 2017a. A class of initials-dependent dynamical systems. Applied Mathematics and Computation, 298:65–76. https://doi.org/10.1016/j.amc.2016.11.004

Ma J, Mi L, Zhou P, et al., 2017b. Phase synchronization between two neurons induced by coupling of electromagnetic field. Applied Mathematics and Computation, 307:321–328. https://doi.org/10.1016/j.amc.2017.03.002

Ma J, Wu F, Wang C, 2017c. Synchronization behaviors of coupled neurons under electromagnetic radiation. International Journal of Modern Physics B, 31(2):1650251.

Mahmoud GM, Mahmoud EE, 2010. Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics, 62(4):875–882. https://doi.org/10.1007/s11071-010-9770-y

Mankin R, Laas K, Laas T, et al., 2018. Memory effects for a stochastic fractional oscillator in a magnetic field. Physical Review E, 97(1):12145. https://doi.org/10.1103/PhysRevE.97.012145

Martinet B, Adrian RJ, 1988. Rayleigh-Benard convection: experimental study of time-dependent instabilities. Experiments in Fluids, 6(5):316–322. https://doi.org/10.1007/BF00538822

Osipov GV, Pikovsky AS, Kurths J, 2002. Phase synchronization of chaotic rotators. Physical Review Letters, 88(4): 54102. https://doi.org/10.1103/PhysRevLett.88.054102

Pano-Azucena AD, Rangel-Magdaleno JJ, Tlelo-Cuautle E, et al., 2017. Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dynamics, 87(4):2203–2217. https://doi.org/10.1007/s11071-016-3184-4

Pecora LM, Carroll TL, 2015. Synchronization of chaotic systems. Chaos, 25(9):97611. https://doi.org/10.1063/1.4917383

Pena Ramirez J, Fey RHB, Nijmeijer H, 2013. Synchronization of weakly nonlinear oscillators with Huygens’ coupling. Chaos, 23(3):33118. https://doi.org/10.1063/1.4816360

Peng JH, Ding EJ, Ding M, et al., 1996. Synchronizing hyperchaos with a scalar transmitted signal. Physical Review Letters, 76(6):904–907. https://doi.org/10.1103/PhysRevLett.76.904

Pereda AE, 2014. Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience, 15:250–263. https://doi.org/10.1038/nrn3708

Podvigin NF, Bagaeva TV, Podvigina DN, et al., 2008. Selective self-synchronization of impulse flows in neuronal networks of the visual system. Biophysics, 53(2):177–181. https://doi.org/10.1134/S0006350908020097

Rössler OE, 1976. An equation for continuous chaos. Physics Letters A, 57(5):397–398. https://doi.org/10.1016/0375-9601(76)90101-8

Ruggieri M, Speciale MP, 2017. On the construction of conservation laws: a mixed approach. Journal of Mathematical Physics, 58(2):23510. https://doi.org/10.1063/1.4976189

Sieberer LM, Huber SD, Altman E, et al., 2013. Dynamical critical phenomena in driven-dissipative systems. Physical Review Letters, 110(19):195301. https://doi.org/10.1103/PhysRevLett.110.195301

Szot P, 2012. Common factors among Alzheimer’s disease, Parkinson’s disease, and epilepsy: possible role of the noradrenergic nervous system. Epilepsia, 53(S1):61–66. https://doi.org/10.1111/j.1528-1167.2012.03476.x

Tang YX, Khalaf AJM, Rajagopal K, et al., 2018. A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors. Chinese Physics B, 27(4):40502. https://doi.org/10.1088/1674-1056/27/4/040502

Tlelo-Cuautle E, Carbajal-Gomez VH, Obeso-Rodelo PJ, et al., 2015a. FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dynamics, 82(4):1879–1892. https://doi.org/10.1007/s11071-015-2284-x

Tlelo-Cuautle E, Rangel-Magdaleno JJ, Pano-Azucena AD, et al., 2015b. FPGA realization of multi-scroll chaotic oscillators. Communications in Nonlinear Science and Numerical Simulation, 27(1-3):66–80. https://doi.org/10.1016/j.cnsns.2015.03.003

Tlelo-Cuautle E, Rangel-Magdaleno J, de la Fraga LG, 2016a. Engineering Applications of FPGAs: Chaotic Systems, Artificial Neural Networks, Random Number Generators, and Secure Communication Systems. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-34115-6

Tlelo-Cuautle E, Pano-Azucena AD, Rangel-Magdaleno JJ, et al., 2016b. Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dynamics, 85(4): 2143–2157. https://doi.org/10.1007/s11071-016-2820-3

Tlelo-Cuautle E, de Jesus Quintas-Valles A, de la Fraga LG, et al., 2016c. VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLoS ONE, 11(2):e0168300. https://doi.org/10.1371/journal.pone.0168300

Tlelo-Cuautle E, de la Fraga LG, Pham VT, et al., 2017. Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points. Nonlinear Dynamics, 89(2):1129–1139. https://doi.org/10.1007/s11071-017-3505-2

Trejo-Guerra R, Tlelo-Cuautle E, Jiménez-Fuentes JM, et al., 2012. Integrated circuit generating 3-and 5-scroll attractors. Communications in Nonlinear Science and Numerical Simulation, 17(11):4328–4335. https://doi.org/10.1016/j.cnsns.2012.01.029

Trejo-Guerra R, Tlelo-Cuautle E, Carbajal-Gomez VH, et al., 2013. A survey on the integrated design of chaotic oscillators. Applied Mathematics and Computation, 219(10): 5113–5122. https://doi.org/10.1016/j.amc.2012.11.021

Ueda Y, Akamatsu N, 1981. Chaotically transitional phenomena in the forced negative-resistance oscillator. IEEE Transactions on Circuits and Systems, 28(3):217–224. https://doi.org/10.1109/TCS.1981.1084975

Vaidyanathan S, Volos C, 2016. Advances and Applications in Chaotic Systems. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-30279-9

Vyas S, Huang H, Gale JT, et al., 2016. Neuronal complexity in subthalamic nucleus is reduced in Parkinson’s disease. IEEE Transactions Neurology System Rehabilitation Engineering, 24(1):36–45. https://doi.org/10.1109/TNSRE.2015.2453254

Wang C, Ma J, 2018. A review and guidance for pattern selection in spatiotemporal system. International Journal of Modern Physics B, 32(6):1830003.

Wang G, Jin W, Liu H, et al., 2018. The synchronization of asymmetric-structured electric coupling neuronal system. International Journal of Modern Physics B, 32(4): 1850040.

Wang H, Wang Q, Lu Q, 2011. Bursting oscillations, bifurcation and synchronization in neuronal systems. Chaos Solitons & Fractals, 44(8):667–675. https://doi.org/10.1016/j.chaos.2011.06.003

Wang Y, Ma J, Xu Y, et al., 2017. The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. International Journal of Bifurcation and Chaos, 27(2):1750030. https://doi.org/10.1142/S0218127417500304

Wu F, Wang C, Xu Y, et al., 2016. Model of electrical activity in cardiac tissue under electromagnetic induction. Science Reports, 6(1):28. https://doi.org/10.1038/s41598-016-0031-2

Wu F, Wang C, Jin W, et al., 2017. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A: Statistical Mechanics and Its Applications, 469:81–88. https://doi.org/10.1016/j.physa.2016.11.056

Xu Y, Ying H, Jia Y, et al., 2017. Autaptic regulation of electrical activities in neuron under electromagnetic induction. Science Reports, 7:43452. https://doi.org/10.1038/srep43452

Yamada T, Fujisaka H, 1986. Intermittency caused by chaotic modulation. I: Analysis with a multiplicative noise model. Progress of Theoretical Physics, 76(3):582–591. https://doi.org/10.1143/PTP.76.582

Yang SS, Duan CK, 1998. Generalized synchronization in chaotic systems. Chaos Solitons & Fractals, 9(10):1703–1707. https://doi.org/10.1016/S0960-0779(97)00149-5

Yang T, Yang LB, Yang CM, 1997. Impulsive control of Lorenz system. Physica D: Nonlinear Phenomena, 110(1-2):18–24. https://doi.org/10.1016/S0167-2789(97)00116-4

Zhang XH, Liu SQ, 2018. Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction. Chinese Physics B, 27(4):40501. https://doi.org/10.1088/1674-1056/27/4/040501