Synchronization of frustrated phase oscillators in the small-world networks

The European Physical Journal Plus - Tập 137 - Trang 1-9 - 2022
Esmaeil Mahdavi1, Mina Zarei1, Farhad Shahbazi2
1Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran
2Department of Physics, Isfahan University of Technology, Isfahan, Iran

Tóm tắt

We numerically study the synchronization of an identical population of Kuramoto–Sakaguchi phase oscillators in Watts–Strogatz networks. We find that, unlike random networks, phase shift could enhance the synchronization in small-world networks. We also observe abrupt phase transition with hysteresis at some values of phase shifts in small-world networks, signs of an explosive phase transition. Moreover, we report the emergence of Chimera states at some values of phase shift close to the transition points, which consist of spatially coexisting synchronized and desynchronized domains.

Tài liệu tham khảo

R.E. Mirollo, S.H. Strogatz, Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645 (1990) J. Garcia-Ojalvo, M.B. Elowitz, S.H. Strogatz, Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. 101, 10955 (2004) J.J. Tyson, Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58, 3919 (1973) H. Nijmeijer, A. Rodriguez-Angeles, Synchronization of Mechanical Systems, vol. 46 (World Scientific, Singapore, 2003) B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354 (1999) H. Nakao, Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57, 188 (2016) Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics (Springer, 1975), pp. 420–422 Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 2012) A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469, 93 (2008) F.A. Rodrigues, T.K.D. Peron, P. Ji, J. Kurths, The kuramoto model in complex networks. Phys. Rep. 610, 1 (2016) P.S. Skardal, D. Taylor, J. Sun, Optimal synchronization of complex networks. Phys. Rev. Lett. 113, 144101 (2014) S.H. Ghorban, F. Baharifard, B. Hesaam, M. Zarei, H. Sarbazi-Azad, Linearization error in synchronization of kuramoto oscillators. Appl. Math. Comput. 411, 126464 (2021) D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393, 440 (1998) D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, 2001) M. Barahona, L.M. Pecora, Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002) R.K. Esfahani, F. Shahbazi, K.A. Samani, Noise-induced synchronization in small world networks of phase oscillators. Phys. Rev. E 86, 036204 (2012) T. Nikfard, Y.H. Tabatabaei, R.K. Esfahani, F. Shahbazi, Enhancement of phase synchronization by an infinite variance noise in a small-world network. Eur. Phys. J. Plus 136, 1 (2021) S. Ameli, M. Karimian, F. Shahbazi, Time-delayed Kuramoto model in the Watts–Strogatz small-world networks, Chaos: an Interdisciplinary. J. Nonlinear Sci. 31, 113125 (2021) C.S. Yokoi, L.-H. Tang, W. Chou, Ground state of the one-dimensional chiral xy model in a field. Phys. Rev. B 37, 2173 (1988) Z. Zheng, B. Hu, G. Hu, Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel–Kontorova chain. Phys. Rev. B 58, 5453 (1998) S. Watanabe, H.S. van der Zant, S.H. Strogatz, T.P. Orlando, Dynamics of circular arrays of Josephson junctions and the discrete Sine–Gordon equation. Physica D 97, 429 (1996) H. Sakaguchi, S. Shinomoto, Y. Kuramoto, Mutual entrainment in oscillator lattices with nonvariational type interaction. Prog. Theoret. Phys. 79, 1069 (1988) H. Sakaguchi, Y. Kuramoto, A soluble active rotater model showing phase transitions via mutual entertainment. Prog. Theoret. Phys. 76, 576 (1986) S.-Y. Ha, H.K. Kim, J. Park, Remarks on the complete synchronization for the kuramoto model with frustrations. Anal. Appl. 16, 525 (2018) S.M. Crook, G.B. Ermentrout, M.C. Vanier, J.M. Bower, The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J. Comput. Neurosci. 4, 161 (1997) P.S. Skardal, D. Taylor, J. Sun, A. Arenas, Erosion of synchronization in networks of coupled oscillators. Phys. Rev. E 91, 010802 (2015) E. Omel’chenko, M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model. Phys. Rev. Lett. 109, 164101 (2012) M. Brede, A.C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto–Sakaguchi model. Phys. Rev. E 93, 062315 (2016) E. Schöll, Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics. Eur. Phys. J. Spec. Top. 225, 891 (2016) D.M. Abrams, S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004) D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008) C.R. Laing, Chimera states in heterogeneous networks. Chaos Interdiscip. J. Nonlinear Sci. 19, 013113 (2009) A. Yeldesbay, A. Pikovsky, M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 112, 144103 (2014) E.A. Martens, C. Bick, M.J. Panaggio, Chimera states in two populations with heterogeneous phase-lag. Chaos Interdiscip. J. Nonlinear Sci. 26, 094819 (2016) J. Gómez-Gardenes, Y. Moreno, A. Arenas, Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007) B. Ermentrout, Type i membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979 (1996) A. Ziaeemehr, M. Zarei, A. Sheshbolouki, Emergence of global synchronization in directed excitatory networks of type i neurons. Sci. Rep. 10, 1 (2020)