Synchronization of different fractional order chaotic systems using active control
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pecora, 1990, Synchronization in chaotic systems, Phys Rev Lett, 64, 821, 10.1103/PhysRevLett.64.821
Kocarev, 1995, General approach for chaotic synchronization with applications to communication, Phys Rev Lett, 74, 5028, 10.1103/PhysRevLett.74.5028
Carroll, 1996, Transforming signals with chaotic synchronization, Phys Rev E, 54, 4676, 10.1103/PhysRevE.54.4676
Hilfer, 2001
He, 1998, Implementation of chaotic cryptography with chaotic synchronization, Phys Rev E, 57, 1532, 10.1103/PhysRevE.57.1532
Huang, 2004, Synchronization of chaotic systems via nonlinear control, Phys Lett A, 320, 271, 10.1016/j.physleta.2003.11.027
Liao, 1998, Adaptive synchronization of two Lorenz systems, Chaos Solitons Fractals, 9, 1555, 10.1016/S0960-0779(97)00161-6
Yassen, 2001, Adaptive control and synchronization of a modified Chua’s circuit system, Appl Math Comput, 135, 113, 10.1016/S0096-3003(01)00318-6
Wang, 2004, Adaptive synchronization for Chen chaotic system with fully unknown parameters, Chaos Solitons Fractals, 19, 899, 10.1016/S0960-0779(03)00256-X
Park, 2005, Adaptive synchronization of Rossler system with uncertain parameters, Chaos Solitons Fractals, 25, 333, 10.1016/j.chaos.2004.12.007
Bowong, 2004, Synchronization of uncertain chaotic systems via backstepping approach, Chaos Solitons Fractals, 21, 999, 10.1016/j.chaos.2003.12.084
Zhang, 2004, Chaos synchronization using single variable feedback based on backstepping method, Chaos Solitons Fractals, 21, 1183, 10.1016/j.chaos.2003.12.079
Bai, 1997, Synchronization of two Lorenz systems using active control, Chaos Solitons Fractals, 8, 51, 10.1016/S0960-0779(96)00060-4
Bai, 2000, Sequential synchronization of two Lorenz systems using active control, Chaos Solitons Fractals, 11, 1041, 10.1016/S0960-0779(98)00328-2
Agiza, 2001, Synchronization of Rossler and chaotic dynamical systems using active control, Phys Lett A, 278, 191, 10.1016/S0375-9601(00)00777-5
Ho, 2002, Synchronization of two different systems by using generalized active control, Phys Lett A, 301, 424, 10.1016/S0375-9601(02)00987-8
Codreanu, 2003, Synchronization of spatiotemporal nonlinear dynamical systems by an active control, Chaos Solitons Fractals, 15, 507, 10.1016/S0960-0779(02)00128-5
Zhang, 2004, Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos Solitons Fractals, 21, 39, 10.1016/j.chaos.2003.09.014
Ucar, 2004, Synchronization of the coupled FitzHugh0Nagumo systems, Chaos Solitons Fractals, 20, 1085, 10.1016/j.chaos.2003.09.039
Yassen, 2005, Chaos synchronization between two different chaotic systems using active control, Chaos Solitons Fractals, 23, 131, 10.1016/j.chaos.2004.03.038
Lei, 2006, Global synchronization of two parametrically excited systems using active control, Chaos Solitons Fractals, 28, 428, 10.1016/j.chaos.2005.05.043
Wu, 2009, Synchronization of a new fractional order hyperchaotic system, Phys Lett A, 373, 2329, 10.1016/j.physleta.2009.04.063
Shahiri, 2010, Chaotic fractional-order Coullet system: synchronization and control approach, Commun Nonlinear Sci Numer Simulat, 15, 665, 10.1016/j.cnsns.2009.05.054
Podlubny, 1999
Samko, 1993
Kilbas, 2006
Sabatier, 2004, Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench, Nonlinear Dyn, 38, 383, 10.1007/s11071-004-3768-2
Caputo, 1971, A new dissipation model based on memory mechanism, Pure Appl Geophys, 91, 134, 10.1007/BF00879562
Mainardi, 2001, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus Appl Anal, 4, 153
Agrawal, 2002, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn, 29, 145, 10.1023/A:1016539022492
Daftardar-Gejji, 2006, Boundary value problems for fractional diffusion-wave equations, Aust J Math Anal Appl, 3, 1
Daftardar-Gejji, 2008, Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method, Appl Math Comput, 202, 113, 10.1016/j.amc.2008.01.027
Sun, 2009, Variable-order fractional differential operators in anomalous diffusion modeling, Physica A, 388, 4586, 10.1016/j.physa.2009.07.024
Jesus, 2008, Fractional control of heat diffusion systems, Nonlinear Dyn, 54, 263, 10.1007/s11071-007-9322-2
Jesus IS, Machado JAT, Barbosa RS. Control of a heat diffusion system through a fractional order nonlinear algorithm. Comput Math Appl, in press. doi: 10.1016/j.camwa.2009.08.010.
Anastasio, 1994, The fractional-order dynamics of brainstem vestibulo-oculomotor neurons, Biol Cybern, 72, 69, 10.1007/BF00206239
Ortigueira, 2006, Fractional calculus applications in signals and systems, Signal Process, 86, 2503, 10.1016/j.sigpro.2006.02.001
Magin, 2006
Daftardar-Gejji, 2004, Analysis of a system of fractional differential equations, J Math Appl Anal, 293, 511, 10.1016/j.jmaa.2004.01.013
Daftardar-Gejji, 2007, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J Math Appl Anal, 328, 1026, 10.1016/j.jmaa.2006.06.007
Matignon D. Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems and application multiconference, IMACS, IEEE-SMC proceedings, Lille, France, July, vol. 2; 1996. p. 963–8.
Kiani-B, 2009, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun Nonlinear Sci Numer Simulat, 14, 863, 10.1016/j.cnsns.2007.11.011
Grigorenko, 2003, Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, 91, 034101, 10.1103/PhysRevLett.91.034101
Li, 2004, Chaos in Chens system with a fractional order, Chaos Solitons Fractals, 22, 443, 10.1016/j.chaos.2004.02.013
Lü, 2006, Chaotic dynamics of the fractional order Lü system and its synchronization, Phys Lett A, 354, 305, 10.1016/j.physleta.2006.01.068
Li, 2004, Chaos and hyperchaos in the fractional order Rossler equations, Phys A Stat Mech Appl, 341, 55, 10.1016/j.physa.2004.04.113
Daftardar-Gejji V, Bhalekar S. Chaos in fractional ordered Liu system. Comput Math Appl, in press. doi: 10.1016/j.camwa.2009.07.003.
Bhalekar, 2010, Fractional ordered Liu system with time-delay, Commun Nonlinear Sci Numer Simulat, 15, 2178, 10.1016/j.cnsns.2009.08.015
Deng, 2005, Chaos synchronization of the fractional Lü system, Physica A, 353, 61, 10.1016/j.physa.2005.01.021
Deng, 2005, Synchronization of chaotic fractional Chen system, J Phys Soc Jpn, 74, 1645, 10.1143/JPSJ.74.1645
Zhou, 2005, Synchronization in fractional-order differential systems, Physica D, 212, 111, 10.1016/j.physd.2005.09.012
Lia, 2006, Chaos synchronization of the Chua system with a fractional order, Physica A, 360, 171, 10.1016/j.physa.2005.06.078
Wang, 2006, Extending synchronization scheme to chaotic fractional-order Chen systems, Physica A, 370, 279, 10.1016/j.physa.2006.03.021
Wang, 2006, Designing synchronization schemes for chaotic fractional-order unified systems, Chaos Solitons Fractals, 30, 1265, 10.1016/j.chaos.2005.09.027
Xingyuan, 2008, Projective synchronization of fractional order chaotic system based on linear separation, Phys Lett A, 372, 435, 10.1016/j.physleta.2007.07.053
Yu, 2008, The synchronization of fractional-order Rossler hyperchaotic systems, Physica A, 387, 1393, 10.1016/j.physa.2007.10.052
Tavazoei, 2008, Synchronization of chaotic fractional-order systems via active sliding mode controller, Physica A, 387, 57, 10.1016/j.physa.2007.08.039
Matouk, 2009, Chaos synchronization between two different fractional systems of Lorenz family, Math Prob Eng, 2009, 10.1155/2009/572724
Hu, 2010, Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems, Commun Nonlinear Sci Numer Simulat, 15, 115, 10.1016/j.cnsns.2009.03.017
Luchko, 1999, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math Vietnamica, 24, 207
Diethelm, 2002, A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3, 10.1023/A:1016592219341
Diethelm, 1997, An algorithm for the numerical solution of differential equations of fractional order, Elec Trans Numer Anal, 5, 1
Diethelm, 2002, Analysis of fractional differential equations, J Math Anal Appl, 265, 229, 10.1006/jmaa.2000.7194
Wu, 2009, Chaos in the fractional-order Lorenz system, Int J Comput Math, 86, 1274, 10.1080/00207160701864426
Liu, 2009, A novel three-dimensional autonomous chaos system, Chaos Solitons Fractals, 39, 1950, 10.1016/j.chaos.2007.06.079
Tavazoei, 2008, Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 2628, 10.1016/j.physd.2008.03.037