Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks

Journal of Computational Neuroscience - Tập 43 - Trang 189-202 - 2017
Pachaya Sailamul1, Jaeson Jang1, Se-Bum Paik1,2
1Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Tóm tắt

Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

Tài liệu tham khảo

Başar, E., & Güntekin, B. (2008). A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research, 1235, 172–193. https://doi.org/10.1016/j.brainres.2008.06.103. Başar, E., Başar-Eroğlu, C., Karakaş, S., & Schürmann, M. (2000). Brain oscillations in perception and memory. International journal of psychophysiology : official journal of the International Organization of Psychophysiology, 35(2–3), 95–124. https://doi.org/10.1016/S0167-8760(99)00047-1. Bastos, A. M., Briggs, F., Alitto, H. J., Mangun, G. R., & Usrey, W. M. (2014). Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience, 34(22), 7639–7644. https://doi.org/10.1523/JNEUROSCI.4216-13.2014. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews. Neuroscience, 13(5), 336–349. https://doi.org/10.1038/nrn3214. Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. https://doi.org/10.1126/science.1138071. Butts, D. A., Kanold, P. O., & Shatz, C. J. (2007). A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biology, 5(3), e61. https://doi.org/10.1371/journal.pbio.0050061. Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.), 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745. Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J., & Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science (New York, N.Y.), 256(5059), 1025–1027. https://doi.org/10.1126/science.1589772. Carnevale, N. T., & Hines, M. L. (2006). The NEURON book (1st ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511541612. Chedotal, A., & Richards, L. J. (2010). Wiring the brain: The biology of neuronal guidance. Cold Spring Harbor Perspectives in Biology, 2(6), a001917–a001917. https://doi.org/10.1101/cshperspect.a001917. Chen, B. L., Hall, D. H., & Chklovskii, D. B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences, 103(12), 4723–4728. https://doi.org/10.1073/pnas.0506806103. Chklovskii, D. B., & Koulakov, A. A. (2004). MAPS IN THE BRAIN: What can we learn from them? Annual Review of Neuroscience, 27(1), 369–392. https://doi.org/10.1146/annurev.neuro.27.070203.144226. Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(37), 11741–11752 http://www.ncbi.nlm.nih.gov/pubmed/14684876. Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). Disrupted neural synchronization in toddlers with autism. Neuron, 70(6), 1218–1225. https://doi.org/10.1016/j.neuron.2011.04.018. Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaál, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79(1), 159–173. Eglen, S. J., Diggle, P. J., & Troy, J. B. (2005). Homotypic constraints dominate positioning of on- and off-center beta retinal ganglion cells. Visual Neuroscience, 22(6), 859–871. https://doi.org/10.1017/S0952523805226147. Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16–25. https://doi.org/10.1016/S1364-6613(00)01568-0. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews. Neuroscience, 2(10), 704–716. https://doi.org/10.1038/35094565. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, N.Y. : 1991), 1(1), 1–47. https://doi.org/10.1093/cercor/1.1.1. Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/j.tics.2005.08.011. Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 32, 209–224. https://doi.org/10.1146/annurev.neuro.051508.135603. Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science (New York, N.Y.), 291(5508), 1560–1563. https://doi.org/10.1126/science.1055465. Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309–316. https://doi.org/10.1016/j.tins.2007.05.005. Gray, C. M., & McCormick, D. A. (1996). Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science (New York, N.Y.), 274(5284), 109–113. https://doi.org/10.1126/science.274.5284.109. Grice, S. J., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., & Johnson, M. H. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport, 12(12), 2697–2700. https://doi.org/10.1097/00001756-200108280-00021. Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364. https://doi.org/10.1016/j.tins.2007.05.004. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837. Huerta-Ocampo, I., Mena-Segovia, J., & Bolam, J. P. (2014). Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Structure & Function, 219(5), 1787–1800. https://doi.org/10.1007/s00429-013-0601-z. Jin, J., Wang, Y., Swadlow, H. a., & Alonso, J. M. (2011). Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nature Neuroscience, 14(2), 232–238. https://doi.org/10.1038/nn.2729. Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology, 2(7), 0805–0815. https://doi.org/10.1371/journal.pcbi.0020095. van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., & Roelfsema, P. R. (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 14332–14341. https://doi.org/10.1073/pnas.1402773111. Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24(1–2), 61–100. https://doi.org/10.1016/S0167-8760(96)00057-8. Koepsell, K., Wang, X., Vaingankar, V., Wei, Y., Wang, Q., Rathbun, D. L., et al. (2009). Retinal oscillations carry visual information to cortex. Frontiers in Systems Neuroscience, 3(April), 4. https://doi.org/10.3389/neuro.06.004.2009. Kumar, A., Rotter, S., & Aertsen, A. (2010). Spiking activity propagation in neuronal networks: Reconciling different perspectives on neural coding. Nature Reviews Neuroscience, 11(9), 615–627. https://doi.org/10.1038/nrn2886. McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8087–8092. https://doi.org/10.1073/pnas.110135097. Moldakarimov, S., Bazhenov, M., & Sejnowski, T. J. (2015). Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2545–2550. https://doi.org/10.1073/pnas.1500643112. Morgan, J. L., Berger, D. R., Wetzel, A. W., & Lichtman, J. W. (2016). The fuzzy logic of network connectivity in mouse visual thalamus. Cell, 165(1), 192–206. https://doi.org/10.1016/j.cell.2016.02.033. Paik, S. B., & Glaser, D. A. (2010). Synaptic plasticity controls sensory responses through frequency-dependent gamma oscillation resonance. PLoS Computational Biology, 6(9), e1000927. https://doi.org/10.1371/journal.pcbi.1000927. Paik, S. B., Kumar, T., & Glaser, D. A. (2009). Spontaneous local gamma oscillation selectively enhances neural network responsiveness. PLoS Computational Biology, 5(4), e1000342. https://doi.org/10.1371/journal.pcbi.1000342. Ratté, S., Hong, S., De Schutter, E., & Prescott, S. A. (2013). Impact of neuronal properties on network coding: Roles of spike initiation dynamics and robust synchrony transfer. Neuron, 78(5), 758–772. https://doi.org/10.1016/j.neuron.2013.05.030. Reid, R. C., & Alonso, J. M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378(6554), 281–284. https://doi.org/10.1038/378281a0. Ringach, D. L. (2004). Haphazard wiring of simple receptive fields and orientation columns in visual cortex. Journal of Neurophysiology, 92(1), 468–476. https://doi.org/10.1152/jn.01202.2003. Romei, V., Gross, J., & Thut, G. (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(25), 8692–8697. https://doi.org/10.1523/JNEUROSCI.0160-10.2010. Saalmann, Y. B., Pigarev, I. N., & Vidyasagar, T. R. (2007). Neural mechanisms of visual attention: How top-down feedback highlights relevant locations. Science, 316(5831), 1612–1615. https://doi.org/10.1126/science.1139140. Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews. Neuroscience, 2(8), 539–550. https://doi.org/10.1038/35086012. Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews. Neuroscience, 6(4), 285–296. https://doi.org/10.1038/nrn1650. Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586. https://doi.org/10.1146/annurev.ne.18.030195.003011. Smith, S. L., & Häusser, M. (2010). Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nature Neuroscience, 13(9), 1144–1149. https://doi.org/10.1038/nn.2620. Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702. https://doi.org/10.1038/nature07991. Soto-Treviño, C., Thoroughman, K. a., Marder, E., & Abbott, L. F. (2001). Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nature Neuroscience, 4(3), 297–303. https://doi.org/10.1038/85147. Tiesinga, P., & Sejnowski, T. J. (2009). Cortical enlightenment: Are attentional gamma oscillations driven by ING or PING? Neuron, 63(6), 727–732. https://doi.org/10.1016/j.neuron.2009.09.009. Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168. https://doi.org/10.1016/j.neuron.2006.09.020. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews. Neuroscience, 11(2), 100–113. https://doi.org/10.1038/nrn2774. Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82(6), 3527–3540. Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550. Wang, H. P., Spencer, D., Fellous, J. M., & Sejnowski, T. J. (2010). Synchrony of Thalamocortical inputs maximizes cortical reliability. Science, 328(5974), 106–109. https://doi.org/10.1126/science.1183108. Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553–559. https://doi.org/10.1016/j.tics.2003.10.012. Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science (New York, N.Y.), 316(5831), 1609–1612. https://doi.org/10.1126/science.1139597. Young, M. P., & Scannell, J. W. (1996). Component-placement optimization in the brain. Trends in Neurosciences, 19(10), 413–415. https://doi.org/10.1016/0166-2236(96)84416-X. Zheng, C., & Colgin, L. L. (2015). Beta and Gamma rhythms go with the flow. Neuron, 85(2), 236–237. https://doi.org/10.1016/j.neuron.2014.12.067.