Symplectic method based on generating function for receding horizon control of linear time-varying systems
Tài liệu tham khảo
Kwon, 2005
Mattingley, 2011, Receding horizon control: automatic generation of high-speed solvers, IEEE Control Syst. Mag., 31, 52, 10.1109/MCS.2011.940571
Richards, 2015, Fast model predictive control with soft constraints, Eur. J. Control., 25, 51, 10.1016/j.ejcon.2015.05.003
Peng, 2014, Optimal nonlinear feedback control of spacecraft rendezvous with finite low-thrust between libration orbits, Nonlinear Dyn., 76, 1611, 10.1007/s11071-013-1233-9
Peng, 2011, Optimal periodic controller for formation flying on libration point orbits, Acta Astronaut., 69, 537, 10.1016/j.actaastro.2011.04.020
Duan, 2010, Non-linear dual-mode receding horizon control for multiple unmanned air vehicles formation flight based on chaotic particle swarm optimization, IET Contr. Theory Appl., 11, 2565, 10.1049/iet-cta.2009.0256
Eaton, 1992, Model-predictive control of chemical processes, Chem. Eng. Sci., 47, 705, 10.1016/0009-2509(92)80263-C
Würth, 2009, Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization, J. Process Control, 19, 1277, 10.1016/j.jprocont.2009.02.001
Ohtsuka, 2004, A continuation/GMRES method for fast computation of nonlinear receding horizon control, Automatica, 40, 563, 10.1016/j.automatica.2003.11.005
Fischer, 2014, Controlling vibrations of a cutting process using predictive control, Comput. Mech., 54, 21, 10.1007/s00466-014-1014-4
Hassan, 2007, Active vibration control of a flexible one-link manipulator using a multivariable predictive controller, Mechatronics, 17, 311, 10.1016/j.mechatronics.2007.02.004
Elliott, 2014, Model predictive control of vibration in a two flexible link manipulator-Part 1, J. Low. Freq. Noise Vib. Act. Control., 33, 455, 10.1260/0263-0923.33.4.455
Elliott, 2014, Model predictive control of vibration in a two flexible link manipulator-Part 2, J. Low. Freq. Noise Vib. Act. Control., 33, 468
Lu, 1999, Regulation about time-varying trajectories: precision entry guidance illustrated, J. Guid. Control Dyn., 22, 784, 10.2514/2.4479
Yuxin, 2016, Indirect Radau pseudospectral method for the receding horizon control problem, Chin. J. Aeronaut., 29, 215, 10.1016/j.cja.2015.12.023
H. Yan, F. Fahroo, I.M. Ross, Optimal feedback control laws by Legendre pseudospectral approximations. Proceedings of the American Control Conference, IEEE Publications, Pisscataway, NJ, (2001) 2388-2393.
Williams, 2004, Application of pseudospectral methods for receding horizon control, J. Guid. Control. Dyn., 27, 310, 10.2514/1.5118
Kwon, 1977, A modified quadratic cost problem and feedback stabilization of a linear system, IEEE Trans. Autom. Control., 22, 838, 10.1109/TAC.1977.1101619
Ohtsuka, 1997, Real-time optimization algorithm for nonlinear receding-horizon control, Automatica, 33, 1147, 10.1016/S0005-1098(97)00005-8
Graichen, 2012, A fixed-point iteration scheme for real-time model predictive control, Automatica, 48, 1300, 10.1016/j.automatica.2012.03.023
Lu, 2000, Closed-form control laws for linear time-varying systems, IEEE Trans. Autom. Control., 45, 537, 10.1109/9.847739
Cai, 2014, On the finite time performance of model predictive control, Syst. Control Lett., 70, 60, 10.1016/j.sysconle.2014.05.013
Kim, 2002, Implementation of stabilizing receding horizon controls for time-varying systems, Automatica, 38, 1705, 10.1016/S0005-1098(02)00087-0
Kowalska, 2012, An approach to variable time receding horizon control, Optim. Control. Appl. Methods, 33, 401, 10.1002/oca.1003
Davison, 1973, The numerical solution of the matrix Riccati differential equation, IEEE Trans. Autom. Control., 18, 71, 10.1109/TAC.1973.1100210
Kenney, 1985, Numerical integration of the differential matrix Riccati equation, IEEE Trans. Autom. Control, 30, 962, 10.1109/TAC.1985.1103822
Schiff, 1999, A natural approach to the numerical integration of Riccati differential equations, SIAM J. Numer. Anal., 36, 1392, 10.1137/S0036142996307946
Ntogramatzidis, 2010, On the solution of the Riccati differential equation arising from the LQ optimal control problem, Syst. Control Lett., 59, 114, 10.1016/j.sysconle.2009.12.006
Peng, 2011, Fourier expansion based recursive algorithms for periodic Riccati and Lyapunov matrix differential equations, J. Comput. Appl. Math., 235, 3571, 10.1016/j.cam.2011.02.011
Peng, 2014, H∞ norm computation of linear continuous-time periodic systems by a structure-preserving algorithm, Int. J. Control., 87, 131, 10.1080/00207179.2013.823670
Zhong, 2009, On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported, Int. J. Solids Struct., 46, 2506, 10.1016/j.ijsolstr.2009.02.001
Li, 2011, On new symplectic superposition method for exact bending solutions of rectangular cantilever thin plates, Mech. Res. Commun., 38, 111, 10.1016/j.mechrescom.2011.01.012
Li, 2011, On new symplectic geometry method for exact bending solutions of orthotropic rectangular plates with two opposite sides clamped, Acta Mech., 216, 333, 10.1007/s00707-010-0381-y
Wu, 2012, Symplectic transformation based analytical and numerical methods for linear quadratic control with hard terminal constraints, SIAM J. Control Optim., 50, 652, 10.1137/090762853
Park, 2006, Solving optimal continuous thrust rendezvous problems with generating functions, J. Guid. Control. Dyn., 29, 321, 10.2514/1.14580
Bryson, 1999
Hairer, 2006
Chu, 2005, A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations, Linear Alg. Appl., 396, 55, 10.1016/j.laa.2004.10.010
Inalhan, 2002, Relative dynamics and control of spacecraft formations in eccentric orbits, J. Guid. Control. Dyn., 25, 48, 10.2514/2.4874
Tilerson, 2002, Coordination and control of distributed spacecraft systems using convex optimization techniques, Int. J. Robust. Nonlinear Control, 12, 207, 10.1002/rnc.683