Symplectic fixed points and holomorphic spheres

Springer Science and Business Media LLC - Tập 120 - Trang 575-611 - 1989
Andreas Floer1
1Courant Institute, New York, USA

Tóm tắt

LetP be a symplectic manifold whose symplectic form, integrated over the spheres inP, is proportional to its first Chern class. On the loop space ofP, we consider the variational theory of the symplectic action function perturbed by a Hamiltonian term. In particular, we associate to each isolated invariant set of its gradient flow an Abelian group with a cyclic grading. It is shown to have properties similar to the homology of the Conley index in locally compact spaces. As an application, we show that if the fixed point set of an exact diffeomorphism onP is nondegenerate, then it satisfies the Morse inequalities onP. We also discuss fixed point estimates for general exact diffeomorphisms.

Tài liệu tham khảo

Arnold, V. I.: Sur une propriete topologique des applications globalement canoniques de la mecanique classique, C. R. Acad. Sci. Paris261, 3719–3722 (1965) —-: Mathematical methods of classical mechanics (Appendix 9), Nauka 1974; Engl. Transl. Berlin, Heidelberg, New York: Springer 1978 Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order. J. Math. Pures Appl.36, 235–249 (1957) Atiyah, M. F., Singer, I. M.: The index of elliptic operators I, III. Ann. Math.87, 484–530 (1968);87, 546–604 (1968) ——, ——: Index theory of skew adjoint Fredholm operators. Publ. Math. IHES37, 305–325 (1969) Banyaga, ——.: Sur la groupe des diffeomorphismes qui preservent une forme symplectique. Comment. Math. Helv.53, 174–227 (1978) Birkhoff, G. D.: Proof of Poincaré's geometric theorem. Trans. AMS14, 14–22 (1912) Chaperon, M.: Quelques questions de geometrie symplectique [d'apres, entre autres, Poincaré, Arnold, Conley et Zehnder], Seminaire Bourbaki 1982–83. Asterisque105–106, 231–249 (1983) Conley, C. C.: Isolated invariant sets and the Morse index, CBMS Reg. Conf. Series in Math 38. Providence, RI: AMS 1978 Conley, C. C., Zehnder, E.: The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold. Invent. Math.73, 33–49 (1983) ——, ——: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure and Appl. Math.34, 207–253 (1984) ——, ——: Subharmonic solutions and Morse-theory. Physica124A, 649–658 (1984) Eliashberg, Y. M.: Estimates on the number of fixed points of area preserving mappings. Preprint, : Syktyvkar University 1978 Floer, A., Hofer, H., Viterbo, C.: The Weinstein conjecture onP×ℂ, preprint Floer, A.: Proof of the Arnold conjecture for surfaces and generalizations to certain Kähler manifolds. Duke Math. J.53, 1–32 (1986) ——: A refinement of the Conley index and an application to the stability of hyperbolic invariant sets. Ergod. Theoret Dyn. Sys.7, 93–103 (1987) —-: Morse theory for Lagrangian intersections. J. Diff. Geom.28, (1988) —-: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. (to appear) —-: A relative Morse index for the symplectic action. Commun. Pure Appl. Math. (to appear) —-: Witten's complex and infinite dimensional Morse theory. J. Diff. Geom. (to appear) —-: Cuplength estimates for Lagrangian intersections (to appear) ——: An instanton-invariant for 3-manifolds. Commun. Math. Phys.118, 215–240 (1988) Fortune, B.: A symplectic fixed point theorem for CPn. Invent. Math.81, 29–46 (1985) Frnsoza, R.: Index filtrations and connection matrices for partially ordered Morse decompositions. Preprint Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math.82, 307–347 (1985) Hofer, H.: Lagrangian embeddings and critical point theory. Ann. Inst. H. Poincaré. Analyse non lineaire2, 407–462 (1985) Hofer, H.: Ljusternik-Snirelman theory for Lagrangian intersections, preprint Hörmander, L.: The analysis of linear differential operators III. Berlin, Heidelberg, New York: Springer 1985 Husemoller, D.: Fibre bundles, Springer Grad. Texts in Math. vol.20. Berlin, Heidelberg, New York: Springer 1966 Kawabe, H.: A symplectic fixed point theorem in case that a symplectic form is exact in the universal covering space and a manifold has no conjugate points, Preprint, Tokyo Inst. of Tech. 1987 Klingenberg, W.: Lectures on closed geodesics. Grundl. der math. Wiss vol.230. Berlin, Heidelberg, New York: Springer 1978 Kondrat'ev, V. A.: Boundary value problems for elliptic equations in domains with conical or angular point. Trans. Mosc. Math. Soc.16, (1967) Kuiper, N. H.: The homotopy type of the unitary group of Hilbert space. Topology3, 19–30 (1965) Laudenbach, F., Sikorav, J. C.: Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent. Invent. Math.82, 349–357 (1985) Lockhard, R. B., McOwen, R. C.: Elliptic operators on noncompact manifolds. Ann. Sci. Norm. Sup. PisaIV-12, 409–446 (1985) Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–130 (1974) Maz'ja, V. G., Plamenevski, B. A.: Estimates onL pand Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary problems in domans with singular points on the boundary. Math. Nachr.81, 25–82 (1978) (in Russian), English Transl. In: AMS Trans., Ser. 2,123, 1–56 (1984) McDuff, D.: Examples of symplectic structures. Invent. Math.89, 13–36 (1987) Milnor, J.: Lectures on the h-cobordism theorem. Math. Notes, Princeton, NJ: Princeton Univ. Press 1965 Nikishin, N.: Fixed points of diffeomorphisms on the two sphere that preserve area. Funk. Anal. i Prel.8, 84–85 (1984) Palais, R. S.: Morse theory on Hilbert manifolds. Topology2, 299–340 (1963) Pansu, P.: Sur l'article de M. Gromov, Preprint, Ecole Polytechnique, Palaiseau 1986 Poincaré, H.: Sur une theoreme de geometrie, Rend. Circolo Mat. Palermo33, 375–407 (1912) Qinn, F.: Transversal approximation on Banach manifolds. In: Proc. Symp. Pure Math. vol.15. Providence, RI: AMS 1970 Rabinowitz, P. H.: Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math.31, 336–352 (1979) Rybakowski, K. P.: The homotopy index and partial differential equations, Universitext. Berlin, Heidelberg, New York: Springer 1987 Rybakowski, K. P., Zehnder, E.: A Morse equation in Conley's index theory for semiflows on metric spaces. Ergod. Theoret Dyn. Sys.5, 123–143 (1985) Sachs, J., Uhlenbeck, K. K.: The existence of minimal 2-spheres. Ann. Math.113, 1–24 (1981) Sikorav, J. C.: Points fixes d'un symplectomorphisme homologue a l'identite. J. Diff. Geom.22, 49–79 (1982) —-: Homologie de Novikov associee a une classe de cohomologie reelle de degree un these, Orsay, 1987 Simon, C. P.: A bound for the fixed point index of an area preserving map with applications to mechanics. Invent. Math.26, 187–200 (1974) Smale, S.: An infinite dimensional version of Sard's theorem. Am. J. Math.87, 213–221 (1973) Spanier, E.: Algebraik topology. New York: McGraw-Hill 1966 Taubes, C. H.: Self-dual connections on manifolds with indefinite intersection matrix. J. Diff. Geom.19, 517–5670 (1984) ——: Gauge theory on asymptotically periodic 4-manifolds. J. Diff. Geom.25, 363–430 (1987) Viterbo, C.: Intersections de sous-varietes lagrangiennes, fonctionelles d'action et indice des systemes hamiltoniens. Preprint 1986 Weinstein, A.: Periodic orbits for convex Hamiltonian systems. Ann. Math.108, 507–518 (1978) ——: On extending the Conley Zehnder fixed point theorem to other manifolds. Proc. Symp. Pure Math. vol.45. Providence, R. J.: AMS 1986 Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom.17, 661–692 (1982) Wolfson, J. G.: A P.D.E. proof of Gromov's compactness of pseudoholomorphic curves, preprint, Tulane University 1986 Zehnder, E.: Periodic solutions of Hamiltonian equations. In: Lecture Notes in Mathematics, vol.1031. pp, 172–1213 Berlin, Heidelberg, New York: Springer 1983