Symplectic Quantization I: Dynamics of Quantum Fluctuations in a Relativistic Field Theory

Foundations of Physics - Tập 51 - Trang 1-12 - 2021
Giacomo Gradenigo1, Roberto Livi2,3,4
1Gran Sasso Science Institute, L’Aquila, Italy
2Dipartimento di Fisica e Astronomia and CSDC, Università di Firenze, Sesto Fiorentino, Italy
3Istituto Nazionale di Fisica Nucleare, Sesto Fiorentino, Italy
4Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy

Tóm tắt

We propose here a new symplectic quantization scheme, where quantum fluctuations of a scalar field theory stem from two main assumptions: relativistic invariance and equiprobability of the field configurations with identical value of the action. In this approach the fictitious time of stochastic quantization becomes a genuine additional time variable, with respect to the coordinate time of relativity. This intrinsic time is associated to a symplectic evolution in the action space, which allows one to investigate not only asymptotic, i.e. equilibrium, properties of the theory, but also its non-equilibrium transient evolution. In this paper, which is the first one in a series of two, we introduce a formalism which will be applied to general relativity in its companion work (Gradenigo, Symplectic quantization II: dynamics of space-time quantum fluctuations and the cosmological constant, 2021).

Tài liệu tham khảo

Gradenigo, G.: Symplectic quantization II: dynamics of space-time quantum fluctuations and the cosmological constant. arxiv:2101.01795 (2021) Parisi, G., Wu, Y.: Perturbation theory without gauge fixing. Sci. Sin. 24, 483–496 (1981) Ramond, P.: Field theory: a modern primer. Frontiers in Physics. Benjamin/Cummings Publishing Co., San Francisco (1981) Daamgard, P.H., Hüffel, H.: Stochastic Quantization. World Scientific, Singapore (1988) Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Oxford Science Publications, Oxford (1989) Gradenigo, G., Iubini, S., Livi, R., Majumdar, S.N.: Localization transition in the discrete non-linear Schrödinger equation: ensembles inequivalence and negative temperatures. J. Stat. Mech. (2021). https://doi.org/10.1088/1742-5468/abda26 Ryang, S., Saito, T., Shigemoto, K.: Canonical stochastic quantization. Prog. Theor. Phys. Lett. 73, 1295–1298 (1985) Rumpf, H.: Stochastic quantization of Einstein gravity. Phys. Rev. D 33, 942 (1986) Martin, P.C., Siggia, E.D., Rose, H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423 (1973) Janssen, H.-K.: On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Zeit. für Phys. B: Cond. Mat. 23, 377 (1976) De Dominicis, C.: Dynamics as a substitute for replicas in systems with quenched random impurities. Phys. Rev. B 18, 4913 (1978) Ryang, S., Saito, T., Shigemoto, K.: Canonical stochastic quantization. Prog. Theor. Phys. 73, 5 (1985) Ji, X.: Parton physics on a Euclidean lattice. Phys. Rev. Lett. 110, 262002 (2013) Mollerach, S., Matarrese, S., Ortolan, A., Lucchin, F.: Stochastic inflation in a simple two-fiel model. Phys. Rev. D 44, 1670 (1994) Gangui, A., Lucchin, F., Matarrese, S., Mollerach, S.: The three-point correlation function of the cosmic microwave background in inflationary models. Astrophys. J. 430, 447–457 (1994) Pinol, L., Renaux-Petel, S., Tada, Y.: A manifestly covariant theory of multifield stochastic inflation in phase space. arXiv:2008.07497 (2020) Pattison, C., Vennin, V., Wands, D., Assadullahi, H.: Ultra-slow-roll inflation with quantum diffusion.arXiv:2101.05741 (2021) Baulieu, L., Wu, S.: Second Order Langevin Equation and Definition of Quantum Gravity By Stochastic Quantisation. arXiv:1807.11255 (2020) Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Class. Quantum Grav. 11, 2899 (1994) Di Cintio, P., Gradenigo, G., Livi, R.. Riotto, A.: Symplectic quantization and the slow dynamics of reheating: formation and decay of cosmological breathers (in preparation)