Symmetries and their lie algebra of a variable coefficient Korteweg-de Vries hierarchy

Chinese Annals of Mathematics, Series B - Tập 37 - Trang 543-552 - 2016
Xiaoying Zhu1, Dajun Zhang2
1College of Sciences, Shandongjianzhu University, Jinan, China
2Department of Mathematics, Shanghai University, Shanghai, China

Tóm tắt

Isospectral and non-isospectral hierarchies related to a variable coefficient Painlevé integrable Korteweg-de Vries (KdV for short) equation are derived. The hierarchies share a formal recursion operator which is not a rigorous recursion operator and contains t explicitly. By the hereditary strong symmetry property of the formal recursion operator, the authors construct two sets of symmetries and their Lie algebra for the isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.

Tài liệu tham khảo

Grimshaw, R., Slowly varying solitary waves, I. Korteweg-de Vries equation, Proc. Royal Soc. Lon. A-Math. Phys. Engin. Sci., 368, 1979, 359–375. Joshi, N., Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrödinger equations, Phys. Lett. A, 125, 1987, 456–460. Zhang, Y. C., Yao, Z. Z., Zhu, H. W., et al., Exact analytic N-soliton-like solution in Wronskian form for a generalized variable-coefficient Korteweg-de Vries model from plasmas and fluid dynamics, Chin. Phys. Lett., 24, 2007, 1173–1176. Zhang, Y. C., Li, J., Meng, X. H., et al., Existence of formal conservation laws of a variable-coefficient Korteweg-de Vries equation from fluid dynamics and plasma physics via symbolic computation, Chin. Phys. Lett., 25, 2008, 878–880. Zhang, D. J., Conservation laws and Lax pair of the variable coefficient KdV equation, Chin. Phys. Lett., 24, 2007, 3021–3023. Hong, W. and Jung, Y. D., Auto-Bäcklund transformation and analytic solutions for general variablecoefficient KdV equation, Phys. Lett. A, 257, 1999, 149–152. Fan, E. G., Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations, Phys. Lett. A, 294, 2002, 26–30. Fuchssteiner, B. and Fokas, A., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4, 1981, 47–66. Fuchssteiner, B., Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Analysis, TMA, 3, 1979, 849–862. Ma, W. X., K-symmetries and t-symmetries of evolution equations and their Lie algebras, J. Phys. A: Math. Gen., 23, 1990, 2707–2716. Ma, W. X., The algebraic structures of isospectral Lax operators and applications to integrable equations, J. Phys. A: Math. Gen., 25, 1992, 5329–5343. Ma, W. X., Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations, J. Math. Phys., 33, 1992, 2464–2476. Ma, W. X. and Fuchssteiner, B., Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations, J. Math. Phys., 40, 1999, 2400–2418. Tamizhmani, K. and Ma, W. X., Master symmetries from Lax operators for certain lattice soliton hierarchies, J. Phys. Soc. Jpn., 69, 2000, 351–361. Chen, D. Y. and Zhang, H. W., Lie algebraic structure for the AKNS system, J. Phys. A: Gen. Math. Phys., 24, 1991, 377–383. Chen, D. Y. and Zhang, D. J., Lie algebraic structures of (1+1)-dimensional Lax integrable systems, J. Math. Phys., 37, 1996, 5524–5538. Tian, C., Symmetries, in Soliton Theory and Its Applications, Gu C. H. ed., Springer-Verlag, Berlin, 1996. Fuchssteiner, B., Master symmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Prog. Theo. Phys., 70, 1983, 1508–1522.