Symmetric conservative form of low-temperature phonon gas hydrodynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. Nielsen andB. I. Shklovsky:Ž. Exp. Theor. Fiz.,56, 709 (1969).
V. L. Gurevich:Кунемука Фононныю Сусмем (Nauka, Moscow, 1980).
I. S. Gradshtein andI. M. Ryzhik:Tablicy Integralov Summ Riadov i Proizvedenii (Gosudarstvennoye Izdatelstvo Fiziko-Matemeticheskoy Literaturi, Moscow, 1963).
F. R. Gantmacher,Теоруя Мамруу (Nauka, Moscow, 1966).
W. Larecki:On the systems of conservation equations involving homogeneous functions, submitted toArch. Mech.
W. Larecki:Symmetric systems of partial differential equations equivalent to consistent system of n+1 conservation equations. Application to insentropic flow of ideal gas, submitted toArch. Mech.
W. Rudin:Principles of Mathematical Analysis (Mc. Graw-Hill, Inc., 1964).
M. N. Kogan:On the principle of maximum entropy, inProceedings of the V Symposium Rarefied Gas Dynamics, Advances in Applied Mechanics, Vol. 1, Suppl. 4 (Academic Press, New York, 1967), p. 359.
T. Ruggeri:Suppl. Boll. Unione, Mat. Ital. Fisica Matematica,4 (5), No. 1, 261 (1985).
T. Ruggeri:Entropy principle, symmetric hyperbolic systems and shock waves, inProceedings of the Conference on Wave Phenomena'83, Toronto 1983, edited byB. Moodie andC. Rogers (North-Holland, Amsterdam, 1984), p. 211.
T. Ruggeri:Thermodynamics and symmetric hyperbolic systems, Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale,Hyperbolic Equations (1980), p. 167.
C. Cattaneo:Atti Sem. Mat. Fis. Univ. Modena,3, 83 (1948).