Symmetric, coherent, Choquet capacities
Tóm tắt
Từ khóa
Tài liệu tham khảo
ANGER, B. and LEMBCKE, J. 1985. Infinitely subadditive capacities as upper envelopes of measures. Z. Wahrsch. Verw. Gebiete 68 403 414. Z.
ARMSTRONG, T. 1990. Comonotonicity, simplical subdivision of cubes and non-linear expected utility via Choquet integrals. Technical Report, Dept. Math. Statist., Univ. Mary land. Z.
BEDNARSKI, T. 1981. On solutions of minimax test problems for special capacities. Z. Wahrsch. Verw. Gebiete 58 397 405. Z.
BEDNARSKI, T. 1982. Binary experiments, minimax tests and 2-alternating capacities. Ann. Statist. 10 226 232. Z. Z.
CHOQUET, G. 1969. Lectures on Analy sis 2. Benjamin Cummings, Reading, MA. Z.
DEMPSTER, A. P. 1967. Upper and lower probabilities induced from a multivalued mapping. Ann. Math. Statist. 38 325 339. Z. Z.
DEMPSTER, A. P. 1968. A generalization of Bayesian inference with discussion. J. Roy. Statist. Soc. Ser. B 30 205 247. Z.
DEROBERTIS, L. and HARTIGAN, J. A. 1981. Bayesian inference using intervals of measures. Ann. Statist. 9 235 244. Z.
FINE, T. 1988. Lower probability models for uncertainty and nondeterministic processes. J. Statist. Plann. Inference 20 389 411. Z.
FORTINI, S. and RUGGERI, F. 1994. Concentration functions and Bayesian robustness. J. Statist. Plann. Inference 40 205 220. Z.
GILBOA, I. 1987. Expected utility theory with purely subjective non-additive probabilities. J. Math. Econom. 16 65 88. Z.
HUBER, P. J. 1973. The use of Choquet capacities in statistics. Bull. Inst. Internat. Statist. 45 181 191. Z.
HUBER, P. J. and STRASSEN, V. 1973. Minimax tests and the Ney man Pearson lemma for capacities. Ann. Statist. 1 251 263. Z.
PAPAMARCOU, A. and FINE, T. 1986. A note on undominated lower probability. Ann. Probab. 14 710 723. Z.
Ry FF, J. 1963. On the representation of doubly stochastic operators. Pacific J. Math. 13 1379 1386. Z. 1
Ry FF, J. 1965. Orbits of L -functions under doubly stochastic transformations. Trans. Amer. Math. Soc. 117 92 100. Z.
SCHMEIDLER, D. 1989. Subjective probability and expected utility without additivity. Econometrica 57 571 587. Z.
SMITH, C. A. B. 1961. Consistency in statistical inference and decision with discussion. J. Roy. Statist. Soc. Ser. B 23 1 37. Z. Z.
WASSERMAN, L. A. and KADANE, J. 1990. Bay es' theorem for Choquet capacities. Ann. Statist. 18 1328 1339. Z.
BERGER, J. 1984. The robust Bayesian viewpoint with discussion. In Robustness in Bayesian Z. Statistics J. Kadane, ed.. North-Holland, Amsterdam. Z.
BERGER, J. 1990. Robust Bayesian analysis: sensitivity to the prior. J. Statist. Plann. Inference 25 303 328. Z.
LAVINE, M. 1991a. Sensitivity in Bayesian statistics: the prior and the likelihood. J. Amer. Statist. Assoc. 86 396 399. Z.
LAVINE, M. 1991b. An approach to robust Bayesian analysis for multidimensional parameter spaces. J. Amer. Statist. Assoc. 86 400 403. Z.
MARSHALL, A. W. and OLKIN, I. 1979. Inequalities: Theory of Majorization and Its Applications. Academic Press, New York. Z.
Ry FF, J. 1970. Measure preserving transformations and rearrangements. J. Math. Anal. Appl. 31 449 458. Z. SADROLHEFAZI and FINE, T. 1994. Finite-dimensional distributions and tail behavior in stationary interval-valued probability models. Ann. Statist. 22 1840 1870.
PITTSBURGH, PENNSy LVANIA 15213 E-MAIL: [email protected] [email protected]