Symmetric-Convex Functionals of Linear Growth
Tóm tắt
We discuss existence and regularity theorems for convex functionals of linear growth that depend on the symmetric rather than the full gradients. Due to the failure Korn’s Inequality in the L1-setup, the full weak gradients of minima do not need to exist, and the paper aims for presenting methods that help to overcome these issues as to partial regularity and higher integrability of minimisers.
Tài liệu tham khảo
Ambrosio, L.; Coscia, A.; Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Rational Mech. Anal. 139 (1997), no. 3, 201–238.
Anzellotti, G.; Giaquinta, M. Convex functionals and partial regularity. Arch. Rational Mech. Anal. 102 (1988), no. 3, 243–272.
Babadjian, J-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64 (2015), no. 4, 1271–1290.
Beck, L.: Elliptic regularity theory. A first course. Lecture Notes of the Unione Matematica Italiana, 19. Springer, Cham; Unione Matematica Italiana, Bologna, 2016. xii+201 pp.
Beck, L.; Schmidt, T.: On the Dirichlet problem for variational integrals in BV. J. Reine Angew. Math. 674 (2013), 113–194.
Beck, L.; Schmidt, T.: Interior gradient regularity for BV minimizers of singular variational problems. Nonlinear Anal. 120 (2015), 86–106.
Bildhauer, M.: Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003. x+217 pp.
Bildhauer, M.: A priori gradient estimates for bounded generalised solutions of a class of variational problems with linear growth. J. Convex Ana. 9 (2002), 117–137.
Bildhauer, M.; Fuchs, M.: On a class of variational integrals with linear growth satisfying the condition of µ-ellipticity. Rend. Mat. Appl. (7) 22 (2002), 249–274 (2003).
Breit, D.; Diening, L.: Sharp conditions for Korn inequalities in Orlicz spaces. J. Math. Fluid Mech. 14 (2012), no. 3, 565–573.
Breit, D.; Cianchi, A.; Diening, L.: Trace-free Korn inequalities in Orlicz spaces. Preprint. arXiv:1605.01006
Bourgain, J.; Brezis, H.; Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80 (2000), 37–86.
Buckley, S.M.; Koskela, P.: Sobolev-Poincaré inequalities for p < 1. Indiana Univ. Math. J. 43 (1994), no. 1, 221–240.
S. Conti; D. Faraco; F. Maggi; S. Müller: Rank-one convex functions on 2 × 2-symmetric matrices and laminates on rank-three lines. Calc. Var. Partial Differential Equations 24 (2005), no. 4, 479–493.
De Giorgi, E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. (Italian) Boll. Un. Mat. Ital. (4) 1 1968, 135–137.
Ekeland, I.; Temam, R.: Convex analysis and variational problems. North-Holland, Amsterdam 1976.
Frehse, J.; Seregin, G.: Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening. Proc. St. Petersburg Math. Soc. 5 (1998), 184–222. English Translation: Amer. Math. Soc. Transl. II, 193 (1999), 127–152.
Fuchs, M.; Mingione, G.: Full C1,α-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manus. Math. 102 (2000), 227–250.
Fuchs, M.; Seregin, G.: A regularity theory for variational integrals with LlogL-growth. Calc. Var. 6 (1998), 171–187.
Fuchs, M.; Seregin, G.: Variational methods for problems from plasticity theory and for generalised Newtonian fluids. Lecture Notes in Mathematics 1749, Springer, Berlin-Heidelberg 2000.
Fuchs, M.; Repin, S. Some Poincar-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 41, 224–233, 237; reprinted in J. Math. Sci. (N.Y.) 178 (2011), no. 3, 367–372.
Giaquinta, M.; Modica, G.; Souček, J.: Functionals with linear growth in the calculus of variations. I, II. Comment. Math. Univ. Carolin. 20 (1979), no. 1, 143156, 157–172.
Giusti, E.: Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003. viii+403 pp.
Giusti, E.; Miranda, M.: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni. (Italian) Boll. Un. Mat. Ital. (4) 1 1968 219–226.
Gmeineder, F.: Partial Regularity for Symmetric-Convex Functionals. In Preparation.
Gmeineder, F.; Kristensen, J.: Sobolev Regularity for Symmetric-Convex Functionals. In Preparation.
Goffman, C.; Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159–178.
Hajlasz, P.: On approximate differentiability of functions with bounded deformation. Manuscripta Math. 91 (1996), no. 1, 61–72.
Kirchheim, B.; Kristensen, J.: On Rank One Convex Functions that are Homogeneous of Degree One. Arch. Ration. Mech. Anal. 221 (2016), no. 1, 527–558.
Kristensen, J.; Mingione, G.: The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184 (2007), no. 2, 341–369.
Ladyzhenskaya, O.A.; Ural’tseva, N.N.: Local estimates for gradients of solutions of non-uniformly elliptic and parabolic problems. Comm. Pure Appl. Math. 23 (1970), 667–703.
Málek, J.; Nečas, J.; Rokyta, M.; Ružička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. xii+317 pp.
Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006), no. 4, 355–426.
Ornstein, D.: A non-equality for differential operators in the L1-norm. Arch. Rational Mech. Anal. 11 1962 40–49.
Reshetnyak, Yu. G.: Weak convergence of completely additive vector functions on a set. Siberian Mathematical Journal (1968), Volume 9, Issue 6, 1039–1045.
Rindler, F.: Lower Semicontinuity for integral functionals in the space of functons of bounded deformation via rigidity and Young measures. Arch. Ration. Mech. Anal. 202 (2011), no. 1, 63–113.
Seregin, G.: On differential properties of extremals of variational problems arising in plasticity theory. Differentsial’nye Uravneniya 26 (1990), 1033–1043 (in Russian). English translation: Differential Equations 26 (1990), 756–766.
Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993.
Strang, G.; Temam, R.: Functions of bounded deformation. Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 7–21.