Symbols of truncated Toeplitz operators

Journal of Functional Analysis - Tập 261 - Trang 3437-3456 - 2011
Anton Baranov1, Roman Bessonov2, Vladimir Kapustin2
1Department of Mathematics and Mechanics, St. Petersburg State University, 28, Universitetskii pr., St. Petersburg, 198504, Russia
2St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia

Tài liệu tham khảo

Ahern, 1970, Radial limits and invariant subspaces, Amer. J. Math., 92, 332, 10.2307/2373326 Aleksandrov, 1981, Invariant subspaces of shift operators. An axiomatic approach, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 113, 7 Aleksandrov, 1994, A simple proof of the Volberg–Treil theorem on the embedding of coinvariant subspaces of the shift operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 217, 26 Aleksandrov, 1995, On the existence of nontangential boundary values of pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222, 5 Aleksandrov, 2000, On embedding theorems for coinvariant subspaces of the shift operator. I, Oper. Theory Adv. Appl., 113, 45 Aleksandrov, 1999, On embedding theorems for coinvariant subspaces of the shift operator. II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262, 5 Baranov, 2005, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal., 223, 116, 10.1016/j.jfa.2004.08.014 Baranov, 2009, Embeddings of model subspaces of the Hardy space: Compactness and Schatten–von Neumann ideals, Izv. RAN Ser. Mat., 73, 3 Baranov, 2010, Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal., 259, 2673, 10.1016/j.jfa.2010.05.005 Baranov, 2011, The Feichtinger conjecture for reproducing kernels in model subspaces, J. Geom. Anal., 21, 276, 10.1007/s12220-010-9147-y Bercovici, 1988, On skew Toeplitz operators, I, Oper. Theory Adv. Appl., 29, 21 Bercovici, 1997, On skew Toeplitz operators, II, Oper. Theory Adv. Appl., 103 Cima, 2006 Cima, 2000, The Backward Shift on the Hardy Space, vol. 79 Cima, 2010, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J., 59, 595, 10.1512/iumj.2010.59.4097 Cima, 2008, Truncated Toeplitz operators on finite dimensional spaces, Oper. Matrices, 2, 357, 10.7153/oam-02-21 Clark, 1972, One-dimensional perturbations of restricted shifts, J. Anal. Math., 25, 169, 10.1007/BF02790036 Cohn, 1982, Carleson measures for functions orthogonal to invariant subspaces, Pacific J. Math., 103, 347, 10.2140/pjm.1982.103.347 Cohn, 1986, Carleson measures and operators on star-invariant subspaces, J. Operator Theory, 15, 181 Dyakonov, 1990, Moduli and arguments of analytic functions from subspaces in Hp that are invariant under the backward shift operator, Sibirsk. Mat. Zh., 31, 64 Garcia, 2010, The norm of a truncated Toeplitz operator, vol. 51, 59 Garnett, 1981 Kapustin, 2004, Boundary values of Cauchy-type integrals, Algebra i Analiz, 16, 114 Kapustin, 2010, On wave operators on the singular spectrum, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 376, 48 Levin, 1996, Lectures on Entire Functions, vol. 150 Nazarov, 2002, The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces Kθ, J. Anal. Math., 87, 385, 10.1007/BF02868482 Nikolski, 1986 Nikolski, 2002, Operators, Functions, and Systems: An Easy Reading, Vol. 2. Model Operators and Systems, vol. 93 Poltoratski, 1993, Boundary behavior of pseudocontinuable functions, Algebra i Analiz, 5, 189 Rochberg, 1987, Toeplitz and Hankel operators on the Paley–Wiener space, Integral Equations Operator Theory, 10, 187, 10.1007/BF01199078 Sarason, 2007, Algebraic properties of truncated Toeplitz operators, Oper. Matrices, 1, 491, 10.7153/oam-01-29 Volberg, 2004, Factorization of polynomials with estimates of norms, Oper. Theory Adv. Appl., 149, 277 Volberg, 1986, Embedding theorems for invariant subspaces of the inverse shift operator, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149, 38