Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode

Nature Nanotechnology - Tập 8 Số 10 - Trang 748-754 - 2013
Catherine Dubourdieu1, J. Bruley2, Thomas M. Arruda3, Agham Posadas4, Jean Jordan-Sweet2, Martin M. Frank2, E. Cartier2, D.J. Frank2, Sergei V. Kalinin3, Alexander A. Demkov4, V. Narayanan2
11] IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA [2].
2IBM T. J Watson Research Center, Yorktown Heights, USA
3Oak Ridge National, Laboratory, Oak Ridge, USA
4Department of Physics, The University of Texas at Austin, Austin, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mc Kee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).

Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).

Scott, J. F. in Ferroelectric Memories Ch. 2,12 (Springer, 2000).

Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

Zhirnov, V. V. & Cavin, R. K. Negative capacitance to the rescue? Nature Nanotech. 3, 77–78 (2008).

Rusu, A., Salvatore, G. A., Jimenez, D. & Ionescu, A. M. Metal–ferroelectric–metal–oxide–semiconductor field effect transistor with sub-60 mV/decade subthreshold swing and internal voltage amplification. Proc. IEDM 16.3.1–16.3.4 (2010).

Batra, I. P., Wurfel, P. & Silverman, B. D. Depolarization field and stability considerations in thin ferroelectric films. J. Vac. Sci. Technol. 10, 687–692 (1973).

Batra, I. P., Wurfel, P. & Silverman, B. D. Phase transition, stability and depolarization field in ferroelectric thin films. Phys. Rev. B 8, 3257 (1973).

Ito, D., Fujimura, N., Yoshimura, T. & Ito, T. Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors. J. Appl. Phys. 93, 5563–5567 (2003).

Khan, A. I. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

Vaithyanathan, V. et al. c-Axis oriented epitaxial BaTiO3 films on (001)Si. J. Appl. Phys. 100, 024108 (2006).

Niu, F. & Wessels, B. W. Epitaxial growth and strain relaxation of BaTiO3 thin films on SrTiO3 buffered (001) Si by molecular beam epitaxy. J. Vac. Sci. Technol. B 25, 1053–1057 (2007).

Niu, G. et al. Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application. Microelectron. Eng. 88, 1232–1235 (2011).

Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

Rouvière, J. L. & Sarigiannidou, E. Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 1–17 (2005).

Jia, C-L. et al. Unit-cell scale mappping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nature Mater. 6, 64–69 (2007).

Kolpak, A. M. et al. Interface-induced polarization and inhibition of ferroelectricity in epitaxial SrTiO3/Si. Phys. Rev. Lett. 105, 217601 (2010).

Gruverman, A. & Kholkin, A. Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69, 2443–2474 (2006).

Balke, N., Bdikin, I., Kalinin, S. V. & Kholkin, A. L. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629–1647 (2009).

Kalinin, S. V., Rar, A. & Jesse, S. A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelec. Freq. Control 53, 2226–2252 (2006).

Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

Sai, N., Kolpak, M. & Rappe, A. M. Ferroelectricity in ultrathin peorvskite films. Phys. Rev. B 72, 020101 (R) (2005).

Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).

Paul, J., Nishimatsu, T., Kawazoe, Y. & Waghmare, U. V. Ferroelectric phase transitions in ultrathin films of BaTiO3 . Phys. Rev. Lett. 99, 077601 (2007).

Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

Cross, L. E. Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006).

Garcia, R., Martinez, R. V. & Martinez, J. Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 35, 29–38 (2006).

Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and ‘real’ hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006).

Alexe, M., Harnagea, C., Hesse, D. & Gösele, U. Polarization imprint and size effects in mesoscopic ferroelectric structures. Appl. Phys. Lett. 79, 242–244 (2001).

Lu, H. et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv. Mater. 24, 1209–1216 (2012).

Streiffer, S. K. et al. Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 (2002).

Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

Tenne, D. A. et al. Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet Raman spectroscopy. Phys. Rev. Lett. 103, 177601 (2009).

Jia, C-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008).

Zubko, P. et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett. 12, 2846–2851 (2012).

Wei, Y. et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films. J. Vac. Sci. Technol. B 20, 1402–1405 (2002).

Choi M. et al. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy. J. Appl. Phys. 111, 064112 (2012).

Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D 44, 464006 (2011).

Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702–073711 (2006).