Switchable beam generation in a reflectarray antenna using rotman lens and combline array feed for IoT

A. Srinag1, S. Aruna1, K. Srinivasa Naik2
1Department of Electronics and Communication Engineering, Andhra University college of Engineering, Visakhapatnam, India
2Department of Electronics and Communication Engineering, Vignan’s Institute of Information Technology, Visakhapatnam, India

Tóm tắt

This paper presents the development of a beam-steerable reflectarray designed for IoT applications in the 5 GHz (WiFi) frequency range. The proposed reflectarray incorporates a combination of a Rotman lens and a combline series-fed array as the feed source, resulting in a planar structure capable of beam steering. By exciting the Rotman lens port, the combline array emits a beam in a specific direction. The reflected beam is then efficiently redirected by the reflectarray towards the desired direction, achieving high gain. The reflectarray system, utilizing a Rotman lens-based combline array as the feed source, enables the generation of four switchable beams directed at angles of $$-10^{\circ }$$ , $$-20^{\circ }$$ , $$-28^{\circ }$$ , and $$-45^{\circ }$$ . Prototypes of the reflectarray, Rotman lens, and combline array were fabricated separately using low-cost FR4 substrate with dimensions of $$100 \times 100 \times 1.6$$  mm $$^3$$ , $$120 \times 150 \times 1.6$$  mm $$^3$$ and $$120 \times 150 \times 1.6$$  mm $$^3$$ , respectively. The reflectarray antenna with a planar feed source exhibits a gain of 18 dBi at 5 GHz. The results from both the simulated and measured data show strong agreement, emphasizing the antenna’s cost-effectiveness, ease of fabrication, and simplicity, which make it highly suitable for IoT applications.

Tài liệu tham khảo

Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C.M., Guan, Y.L.: Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53(6), 102–108 (2015). https://doi.org/10.1109/MCOM.2015.7120024 Balarajuswamy, T., Nakkeeran, R.: Reconfigurable siw antenna at 28/38 ghz for 5g applications. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01143-1 Akan, O.B., Cetinkaya, O., Koca, C., Ozger, M.: Internet of hybrid energy harvesting things. IEEE Internet Things J. 5(2), 736–746 (2018). https://doi.org/10.1109/JIOT.2017.2742663 Myllymaki, S., Hannila, E., Kokkonen, M., Jantunen, H., Fabritius, T.: Design thinking-driven development of a modular x-band antenna using multi-material 3d printing. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01504-4 Bi, S., Zeng, Y., Zhang, R.: Wireless powered communication networks: an overview. IEEE Wirel. Commun. 23(2), 10–18 (2016). https://doi.org/10.1109/MWC.2016.7462480 Mishra, D., Alexandropoulos, G.C., De, S.: Energy sustainable iot with individual qos constraints through miso swipt multicasting. IEEE Internet Things J. 5(4), 2856–2867 (2018). https://doi.org/10.1109/JIOT.2018.2842150 Devarapalli, A.B., Moyra, T.: Cpw-fed dual-element metamaterial inspired multiband antenna using simple fss for gain enhancement. Optik 290, 171313 (2023). https://doi.org/10.1016/j.ijleo.2023.171313 Devarapalli, A., Moyra, T.: Design of a metamaterial loaded w-shaped patch antenna with fss for improved bandwidth and gain. Silicon (2022). https://doi.org/10.1007/s12633-022-02123-6 Heino, M., Icheln, C., Haarla, J., Haneda, K.: Pcb-based design of a beamsteerable array with high-gain antennas and a Rotman lens at 28 ghz. IEEE Antennas Wirel. Propag. Lett. 19(10), 1754–1758 (2020). https://doi.org/10.1109/LAWP.2020.3017129 Wang, J., Li, Y., Ge, L., Wang, J., Luk, K.-M.: A 60 ghz horizontally polarized magnetoelectric dipole antenna array with 2-d multibeam endfire radiation. IEEE Trans. Antennas Propag. 65(11), 5837–5845 (2017). https://doi.org/10.1109/TAP.2017.2754328 Lee, J.-I., Lee, J.-H., Lee, S.-H., Seo, D.-W.: Low sidelobe design of microstrip comb-line array antenna using deformed radiating elements in the millimeter-wave band. IEEE Trans. Antennas Propag. 70(10), 9930–9935 (2022). https://doi.org/10.1109/TAP.2022.3184555 Lee, S., Song, S., Kim, Y., Lee, J., Cheon, C.-Y., Seo, K.-S., Kwon, Y.: A v-band beam-steering antenna on a thin-film substrate with a flip-chip interconnection. IEEE Microw. Wirel. Compon. Lett. 18(4), 287–289 (2008). https://doi.org/10.1109/LMWC.2008.918966 Najafabadi, A.M.A., Ghani, F.A., Tekin, I.: Low-cost multibeam millimeter-wave array antennas for 5g mobile applications. IEEE Trans. Veh. Technol. 71(12), 12450–12460 (2022). https://doi.org/10.1109/TVT.2022.3198878 Afoakwa, S., Jung, Y.-B.: Wideband microstrip comb-line linear array antenna using stubbed-element technique for high sidelobe suppression. IEEE Trans. Antennas Propag. 65(10), 5190–5199 (2017). https://doi.org/10.1109/TAP.2017.2741023 Yuan, T., Yuan, N., Li, L.-W.: A novel series-fed taper antenna array design. IEEE Antennas Wirel. Propag. Lett. 7, 362–365 (2008). https://doi.org/10.1109/LAWP.2008.928487 Samaiyar, A., Abdelrahman, A.H., Boskovic, L.B., Filipovic, D.S.: Extreme offset-fed reflectarray antenna for compact deployable platforms. IEEE Antennas Wirel. Propag. Lett. 18(6), 1139–1143 (2019). https://doi.org/10.1109/LAWP.2019.2911019 Liu, S., Chen, Q.: A wideband, multifunctional reflect-transmit-array antenna with polarization-dependent operation. IEEE Trans. Antennas Propag. 69(3), 1383–1392 (2021). https://doi.org/10.1109/TAP.2020.3016509 Chen, G.-T., Jiao, Y.-C., Zhao, G., Luo, C.-W.: Design of wideband high-efficiency circularly polarized folded reflectarray antenna. IEEE Trans. Antennas Propag. 69(10), 6988–6993 (2021). https://doi.org/10.1109/TAP.2021.3096276 Rotman, W., Turner, R.: Wide-angle microwave lens for line source applications. IEEE Trans. Antennas Propag. 11(6), 623–632 (1963). https://doi.org/10.1109/TAP.1963.1138114 Ozturk, E., Saka, B.: Multilayer minkowski reflectarray antenna with improved phase performance. IEEE Trans. Antennas Propag. 69(12), 8961–8966 (2021). https://doi.org/10.1109/TAP.2021.3090533 Huang, J., Encinar, J.A.: Reflectarray Antennas. Wiley, New York (2007)