Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels

Tamara Erceg1, Tamara Dapčević‐Hadnađev2, Miroslav Hadnađev2, Ivan Ristić1
1Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
2Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kostić A, Jovanović J, Adnadjević B, Popović A (2007) Comparison of the swelling kinetics of a partially neutralized poly(acrylic acid) hydrogel in distilled water. Journal of Serbian Chemical Sociaty 72:1139–1153. https://doi.org/10.2298/JSC0711139K

Kopecek J (2002) Polymer chemistry: swell gels. Nature 417:388–391. https://doi.org/10.1038/417388a

Mahkam M, Allahverdipoor M (2004) Controlled release of biomolecules from pH-sensitive network polymers prepared by radiation polymerization. J Drug Target 12:151–156. https://doi.org/10.1080/10611860410001688009

Xue W, Champ S, Huglin M (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 42:3665–3669. https://doi.org/10.1016/S0032-3861(00)00627-3

Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Material Science and Engineering: C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

Okay O, Sariisik SB, Zor SD (1998) Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: Comparison of experiment with theory. J Appl Polym Sci 70:567–575. https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<567::AID-APP19>3.0.CO;2-Y

Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005

Shah R, Saha N, Kitano T, Saha P (2014) Preparation of CaCO3-based biomineralized polyvinylpyrrolidone–carboxymethylcellulose hydrogels and their viscoelastic behavior. J Appl Polym Sci 131:40237. https://doi.org/10.1002/app.40237

Tang S, Glassman MJ, Li S, Socrate S, Olsen BD (2014) Oxidatively responsive chain extension to entangle engineered protein hydrogels. Macromolecules 47:791–799. https://doi.org/10.1021/ma401684w

Gradzielski M, Homann I (2018) Polyelectrolyte-surfactants complexes (PESCs) composed of oppositely charged components. Current Opinion in Colloid Interface and Science 35:124–141. https://doi.org/10.1016/j.cocis.2018.01.017

Smilek J, Jarábková S, Velcer T, Pekar M (2019) Compositional and temperature effects on the rheological properties of polyelectrolyte-surfactant hydrogels. Polymers 11:927. https://doi.org/10.3390/polym11050927

Mah E, Ghosh R (2013) Thermo-responsive hydrogels for stimuli-responsive membranes. Processes 1:238–262. https://doi.org/10.3390/pr1030238

Craciun G, Ighigeanu D, Manaila E, Stelescu MD (2015) Synthesis and characterization of poly(acrylamide-co-acrylic acid) flocculant obtained by electron beam irradiation. Mater Res 18:984–993. https://doi.org/10.1590/1516-1439.00871

Mutar MA, Kmal RK (2012) Preparation of copolymer of acrylamide and acrylic acid and its application for slow release sodium nitrate fertilizer 71-83. https://doi.org/10.13140/RG.2.2.26409.44647

Tomar RS, Gupta I, Singhal NAK (2007) Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: study of network parameters and swelling behaviour. Polym-Plast Technol Eng 46:481–488. https://doi.org/10.1080/03602550701297095

Chen J, Zhao Y (2000) Relation between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbent polymers. J Appl Polym Sci 75:808–814. https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3

Nesrinne S, Djamel A (2007) Synthesis, characterization and rheologicalbehavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem 10:539–547. https://doi.org/10.1016/j.arabjc.2013.11.027

El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Global Cardiology Science and Practice 2013:1–27. https://doi.org/10.5339/gcsp.2013.38

Saxena VK, Chandra U (2011) Microwave synthesis: a physical concept. In: Chandra U (ed) Microwave heating, IntechOpen. https://doi.org/10.5772/22888

Kalaleh HA, Tally M, Atassi Y (2015) Preparation of bentonite-g-poly(acrylate-co-acrylamide) superabsorbent polymer composite for agricultural applications: optimization and characterization. Polymer Science Series B 57:750–758. https://doi.org/10.1134/S1560090415060081

Erceg T, Cakić S, Cvetinov M, Dapčević-Hadnađev T, BudinskiSimendić J, Ristić I (2019) The properties of conventionally and microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Polym Bull 77:2089–2110. https://doi.org/10.1007/s00289-019-02840-w

Erceg T, Ristić I, Hadnađev M, Cakić S, Budinski-Simendić J (2018) Swelling, mechanical and thermal properties of microwave–synthesized intelligent soft materials. Materials Science. Non-Equilibrium Phase Transformations 4:86–88

Kıpçak AS, Ismail O, Doymaz I, Pişkin S (2014) Modeling and investigation of the swelling kinetics of acrylamide-sodium acrylate hydrogel. Journal of Chemistry 2014:1–8. https://doi.org/10.1155/2014/281063

Boztepe C, Şölener M, Yuceer M, Kunkul A, Kabasakal O (2015) Modeling of swelling behaviors of acrylamide-based polymeric hydrogels by intelligent system. J Dispers Sci Technol 36:1647–1656. https://doi.org/10.1080/01932691.2014.996892

Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218. https://doi.org/10.1063/1.437602

Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92:1365–1359. https://doi.org/10.1063/1.458148

Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/s0939-6411(00)00090-4

Omidian H, Hashemi SA, Sammes PG, Meldrum I (1998) A model for the swelling of superabsorbent polymers. Polymer 39:6697–6704. https://doi.org/10.1016/S0032-3861(98)00095-0

Sugahara Y, Takahisa O (2001) Synthesis of starch-graft -polyacrylonitrile hydrolyzate and its characterization. J Appl Polym Sci 82:1437–1443. https://doi.org/10.1002/app.1981

Soleimani F, Sadeghi H, Shashavari H, Soleimani A, Sadeghi F (2013) Search result studies of swelling kinetics of carboxymethyl cellulose-g-PMAAm-co-PNIPAm superabsorbent hydrogels. Asian Journal of Chemistry 25:4851–4855. https://doi.org/10.14233/ajchem.2013.14123

Quintana JR, Valderruten NE, Katime I (1999) Synthesis and swelling kinetics of poly(dimethylaminoethyl acrylate methyl chloride quaternary-co-itaconic acid) hydrogels. Langmuir 15:4728–4730. https://doi.org/10.1021/la980982

Pescosolido L, Feruglio L, Farra R, Fiorentino S, Colombo I, Coviello T, Matricardi PW, Hennink WE, Vermonden T, Grassi M (2012) Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter 8:7708–7715. https://doi.org/10.1039/C2SM25677K

Chavda HV, Patel RD, Modhia IP, Patel CN (2012) Preparation and characterization of superporous hydrogel based on different polymers. International Journal of Pharmaceutical Investigation 2:134–139. https://doi.org/10.4103/2230-973x.104396

Sinnwell S, Ritter H (2007) Recent advances in microwave-assisted polymer synthesis. Aust J Chem 60:729–743. https://doi.org/10.1002/app.1981

Gabriel C, Gabriel S, Grant EH, Halstead BS, Mingos DMP (1998) Dielectric parameters relevant to microwave heating. Chem Soc Rev 27:213–223. https://doi.org/10.1039/A827213Z

Braun D, Cherdron H, Ritter H (2001) Polymer synthesis: theory and practice, fundamentals, methods, experiments3rd edn. Springer Verlag, Berlin

Kolthoff IM, Miller IK (1951) The chemistry of persulfate. II The reaction of persulfate with mercaptans solubilized in solutions of saturated fatty acid soaps. The Journal of American Chemical Society 73:5118–5122. https://doi.org/10.1021/ja01155a030

Kokufuta E (2005) Polyelectrolyte gel transitions: experimental aspects of charge inhomogeneity in the swelling and segmental attractions in the shrinking. Langmuir 21:10004–10015. https://doi.org/10.1021/la050530e

Chaudhari AK, Han I, Tan JC (2015) Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanoparticles. Adv Mater 27:4438–4446. https://doi.org/10.1002/adma.201501448

Cuomo F, Cofelice M, Lopez F (2019) Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 11:259. https://doi.org/10.3390/polym11020259

Ali W, Gebert B, Altinpinar S, Mayer-Gall T, Ulbricht M, Gutmann JS, Graf K (2018) On the potential of using dual-function hydrogels for brackish water desalination. Polymers 10:567. https://doi.org/10.3390/polym10060567