Sustainable production of self-activated bio-derived carbons through solar pyrolysis for their use in supercapacitors
Tài liệu tham khảo
González, 2016, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58, 1189, 10.1016/j.rser.2015.12.249
Pandolfo, 2006, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11, 10.1016/j.jpowsour.2006.02.065
Martínez-Casillas, 2019, A sustainable approach to produce activated carbons from pecan nutshell waste for environmentally friendly supercapacitors, Carbon, 148, 403, 10.1016/j.carbon.2019.04.017
Wang, 2016, Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes, J. Solid State Electrochem., 20, 319, 10.1007/s10008-015-3042-1
Kuratani, 2011, Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector, J. Power Sources, 196, 10788, 10.1016/j.jpowsour.2011.09.001
Martínez-Casillas, 2018, Leather waste-derived biochar with high performance for supercapacitors, J. Electrochem. Soc., 165, A2061, 10.1149/2.0421810jes
Kleszyk, 2015, Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors, Carbon N. Y., 81, 148, 10.1016/j.carbon.2014.09.043
Jiménez-Cordero, 2014, Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes, Carbon, 71, 127, 10.1016/j.carbon.2014.01.021
Fic, 2018, Sustainable materials for electrochemical capacitors, Mater. Today, 21, 437, 10.1016/j.mattod.2018.03.005
Zuliani, 2018, Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors, J. Power Sources, 395, 271, 10.1016/j.jpowsour.2018.05.046
Tian, 2018, A novel porous carbon material made from wild rice stem and its application in supercapacitors, Mater. Chem. Phys., 213, 267, 10.1016/j.matchemphys.2018.04.026
Liu, 2017, Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods, J. Power Sources, 366, 123, 10.1016/j.jpowsour.2017.08.104
Wang, 2018, Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance, J. Mater. Sci. Technol., 34, 1959, 10.1016/j.jmst.2018.01.005
Bichat, 2010, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon N. Y., 48, 4351, 10.1016/j.carbon.2010.07.049
Raymundo-Piñero, 2011, Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons, ChemSusChem, 4, 943, 10.1002/cssc.201000376
Raymundo-Piñero, 2006, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 18, 1877, 10.1002/adma.200501905
Raymundo-Piñero, 2009, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds, Adv. Funct. Mater., 19, 1032, 10.1002/adfm.200801057
Chen, 2012, Mesoporous activated carbon from inherently potassium-rich pokeweed by in situ self-activation and its use for phenol removal, J. Anal. Appl. Pyrolysis, 98, 159, 10.1016/j.jaap.2012.09.011
Biswal, 2013, From dead leaves to high energy density supercapacitors, Energy Environ. Sci., 6, 1249, 10.1039/c3ee22325f
Zhang, 2017, Biomass organs control the porosity of their pyrolyzed carbon, Adv. Funct. Mater., 27, 1
2019
González García, 2005, Potencial del bagazo de agave tequilero para la producción de biopolímeros y carbohidrasas por bacteriias celulolíticas y para la obtención de compuestos fenólicos, E-Gnosis, 3, 1
Rocco, 2016, Production and logistics planning in the tomato processing industry: a conceptual scheme and mathematical model, Comput. Electron. Agric., 127, 763, 10.1016/j.compag.2016.08.002
F. and A. Organization, 2019
Dhyani, 2018, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renew. Energy, 129, 695, 10.1016/j.renene.2017.04.035
Zeng, 2017, Solar pyrolysis of carbonaceous feedstocks: a review, Sol. Energy, 156, 73, 10.1016/j.solener.2017.05.033
Ayala-Cortés, 2019, Exploring the influence of solar pyrolysis operation parameters on characteristics of carbon materials, J. Anal. Appl. Pyrolysis, 140, 290, 10.1016/j.jaap.2019.04.006
Riveros-Rosas, 2010, Optical design of a high radiative flux solar furnace for Mexico, Sol. Energy, 84, 792, 10.1016/j.solener.2010.02.002
Rayón-López, 2019, High-temperature tungsten trioxides obtained by concentrated solar energy: physicochemical and electrochemical characterization, J. Solid State Electrochem., 23, 707, 10.1007/s10008-018-04167-4
A.P.& P. Association (APPA), Preparation of Wood for Chemical Analysis, (207AD).
Scherrer, 1912, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Kolloidchem. Ein Lehrb., 277, 387, 10.1007/978-3-662-33915-2_7
Patterson, 1939, The scherrer formula for X-ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978
Fernández, 2019, Microstructure homogeneity of milled aluminum A356-Si3N4 metal matrix composite powders, J. Mater. Res. Technol., 8, 2969, 10.1016/j.jmrt.2019.05.004
Ishii, 2013, Pore size determination in ordered mesoporous materials using powder X-ray diffraction, J. Phys. Chem. C, 117, 18120, 10.1021/jp4057362
Kacher, 2009, Bragg’s Law diffraction simulations for electron backscatter diffraction analysis, Ultramicroscopy, 109, 1148, 10.1016/j.ultramic.2009.04.007
Navale, 2018, Specific capacitance, energy and power density coherence in electrochemically synthesized polyaniline-nickel oxide hybrid electrode, Org. Electron., 57, 110, 10.1016/j.orgel.2018.02.037
Vaquero, 2013, Mass-balancing of electrodes as a strategy to widen the operating voltage window of carbon/carbon supercapacitors in neutral aqueous electrolytes, Int. J. Electrochem. Sci., 8, 10293, 10.1016/S1452-3981(23)13111-7
Laheäär, 2015, Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochem. Commun., 60, 21, 10.1016/j.elecom.2015.07.022
Cuentas-Gallegos, 2016, Environmentally Friendly supercapacitors, 345
Chávez-Guerrero, 2010, Bagasse from the mezcal industry as an alternative renewable energy produced in arid lands, Fuel, 89, 4049, 10.1016/j.fuel.2010.07.026
Muñiz, 2019, Insights into the design of carbon electrodes coming from lignocellulosic components pyrolysis with potential application in energy storage devices: a combined in silico and experimental study, J. Anal. Appl. Pyrolysis, 139, 131, 10.1016/j.jaap.2019.01.018
Mohan, 2006, Pyrolysis of wood/biomass for bio-oil: a critical review, Energy Fuels, 20, 848, 10.1021/ef0502397
Jain, 2014, Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 183, 54, 10.1016/j.mseb.2013.12.004
Cagnon, 2009, Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors, Bioresour. Technol., 100, 292, 10.1016/j.biortech.2008.06.009
Yang, 2006, In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin, Energy Fuels, 20, 388, 10.1021/ef0580117
Stefanidis, 2014, A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin, J. Anal. Appl. Pyrolysis, 105, 143, 10.1016/j.jaap.2013.10.013
Liu, 2011, Interactions of biomass components during pyrolysis: a TG-FTIR study, J. Anal. Appl. Pyrolysis, 90, 213, 10.1016/j.jaap.2010.12.009
Yang, 2007, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781, 10.1016/j.fuel.2006.12.013
Llorach-Massana, 2017, Technical feasibility and carbon footprint of biochar co-production with tomato plant residue, Waste Manag., 67, 121, 10.1016/j.wasman.2017.05.021
Lv, 2020, A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification, Appl. Surf. Sci., 510, 145425, 10.1016/j.apsusc.2020.145425
Niu, 2018, Structural evolution, induced effects and graphitization mechanism of reduced graphene oxide sheets/polyimide composites, Compos. Part B Eng., 134, 127, 10.1016/j.compositesb.2017.09.047
Ferrari, 2000, Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectro, Phys. Rev. B, 62, 11089, 10.1103/PhysRevB.62.11089
M.J. I, 2018, Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies, Diam. Relat. Mater., 88, 129, 10.1016/j.diamond.2018.07.009
Ferrari, 2007, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47, 10.1016/j.ssc.2007.03.052
Robertson, 2002, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep., 37, 129, 10.1016/S0927-796X(02)00005-0
Thommes, 2015, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051, 10.1515/pac-2014-1117
Fu, 2012, Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate, J. Anal. Appl. Pyrolysis, 98, 177, 10.1016/j.jaap.2012.08.005
Zhou, 2018, Biomass-derived nitrogen and oxygen co-doped hierarchical porous carbon for high performance symmetric supercapacitor, J. Solid State Chem., 268, 149, 10.1016/j.jssc.2018.08.041
Kim, 2010, Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors, J. Power Sources, 195, 2125, 10.1016/j.jpowsour.2009.09.080
Ábrego, 2019, Heat requirement for fixed bed pyrolysis of beechwood chips, Energy, 178, 145, 10.1016/j.energy.2019.04.078
Gryglewicz, 1992, The behaviour of sulphur forms during pyrolysis of low-rank coal, Fuel, 71, 1225, 10.1016/0016-2361(92)90047-R
Hou, 2018, Transformation of sulfur and nitrogen during Shenmu coal pyrolysis, Fuel, 231, 134, 10.1016/j.fuel.2018.05.046
Zhao, 2017, Volatile production from pyrolysis of cellulose, hemicellulose and lignin, J. Energy Inst., 90, 902, 10.1016/j.joei.2016.08.004
Zou, 2016, Hydrogen production from pyrolysis catalytic reforming of cellulose in the presence of K alkali metal, Int. J. Hydrogen Energy, 41, 10598, 10.1016/j.ijhydene.2016.04.207
Braumlin, 2006, Production of hydrogen by lignins fast pyrolysis, Int. J. Hydrogen Energy, 31, 2179, 10.1016/j.ijhydene.2006.02.016
He, 2019, Fabrication of 3D ordered honeycomb-like nitrogen-doped carbon/PANI composite for high-performance supercapacitors, Appl. Surf. Sci., 484, 1288, 10.1016/j.apsusc.2019.04.133
Yu, 2019, Surface modulated hierarchical graphene film via sulfur and phosphorus dual-doping for high performance flexible supercapacitors, Chin. Chem. Lett., 30, 1121, 10.1016/j.cclet.2019.01.009
Wu, 2014, On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area, J. Mater. Chem. A, 2, 18998, 10.1039/C4TA03430A
Gao, 2012, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte, Energy Environ. Sci., 5, 9611, 10.1039/c2ee22284a
Keskinen, 2018, Monolithically prepared aqueous supercapacitors, J. Energy Storage, 16, 243, 10.1016/j.est.2018.02.008
Lee, 2018, Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers, Nano Energy, 46, 277, 10.1016/j.nanoen.2018.01.042
Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297
Burke, 2010, Testing of electrochemical capacitors: capacitance, resistance, energy density, and power capability, Electrochim. Acta, 55, 7538, 10.1016/j.electacta.2010.04.074
Navalpotro, 2018, Insights into the energy storage mechanism of hybrid supercapacitors with redox electrolytes by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 263, 110, 10.1016/j.electacta.2017.12.167
Lee, 2016, Analogical understanding of the Ragone plot and a new categorization of energy devices, Energy Procedia, 88, 526, 10.1016/j.egypro.2016.06.073
Pell, 1996, Quantitative modeling of factors determining Ragone plots for batteries and electrochemical capacitors, J. Power Sources, 63, 255, 10.1016/S0378-7753(96)02525-6
Tsai, 2017, Graphene-enhanced electrodes for scalable supercapacitors, Electrochim. Acta, 257, 372, 10.1016/j.electacta.2017.10.056
Christen, 2000, Theory of ragone plots, J. Power Sources, 91, 210, 10.1016/S0378-7753(00)00474-2
Thangavel, 2018, High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device, J. Power Sources, 383, 102, 10.1016/j.jpowsour.2018.02.037
Zhang, 2015, On the electrochemical origin of the enhanced charge acceptance of the lead-carbon electrode, J. Mater. Chem. A, 3, 4399, 10.1039/C4TA05891G