Sustainable green solvents and techniques for lipid extraction from microalgae: A review

Algal Research - Tập 21 - Trang 138-147 - 2017
S.P. Jeevan Kumar1,2, Vijay Kumar Garlapati3,1, Archana Dash1, Peter Scholz4, Rintu Banerjee‬‬‬‬‬‬‬‬‬1
1Microbial Biotechnology and Downstream Processing Laboratory, Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721 302, India
2Seed Molecular Biology and Biotechnology, ICAR-Indian Institute of Seed Science, Mau 275103, Uttar Pradesh, India
3Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh 173234, India
4Hochschule Rhein-Waal, Marie-Curie Str 1, 47533 Kleve, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kumar, 2015, Lipid extraction methods from microalgae: a comprehensive review, Front. Energy Res., 2, 1

Cooney, 2009, Extraction of bio-oils from microalgae, Sep. Purif. Rev., 38, 291, 10.1080/15422110903327919

Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j

Arumugam, 2011, Microalgae: a renewable source for second generation biofuels, Curr. Sci., 100, 1141

Archanaa, 2012, Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method, Biomass Bioenergy, 46, 805, 10.1016/j.biombioe.2012.07.002

Folch, 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 226, 497, 10.1016/S0021-9258(18)64849-5

Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099

Meng, 2009, Biodiesel production from oleaginous microorganisms, Renew. Energy, 34, 1, 10.1016/j.renene.2008.04.014

Brennan, 2010, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009

Tanzi, 2012, Terpenes as green solvents for extraction of oil from microalgae, Molecules, 17, 8196, 10.3390/molecules17078196

Toplisek, 1995, Cleaning with d-limonenes: a substitute for chlorinated solvents, Precis. Clean., 3, 17

Chemat, 2012, Limonene as green solvent for extraction of natural products, 175

Chemat, 2012, Green extraction of natural products: concept and principles, Int. J. Mol. Sci., 13, 8615, 10.3390/ijms13078615

Li, 2016, The use of environmentally sustainable bio-derived solvents in solvent extraction applications—a review, Chin. J. Chem. Eng., 24, 215, 10.1016/j.cjche.2015.07.021

Iqbal, 2013, Microwave assisted lipid extraction from microalgae using biodiesel as cosolvent, Algal Res., 2, 34, 10.1016/j.algal.2012.10.001

Tanzi, 2013, New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process, Bioresour. Technol., 134, 271, 10.1016/j.biortech.2013.01.168

Santana, 2012, Supercritical carbondioxide extraction of algal lipids for the biodiesel production, Procedia Eng., 42, 1927, 10.1016/j.proeng.2012.07.569

Yen, 2015, Supercritical fluid extraction of valuable compounds from microalgal biomass, Bioresour. Technol., 184, 291, 10.1016/j.biortech.2014.10.030

Mouahid, 2013, Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling, J. Supercrit. Fluids, 77, 7, 10.1016/j.supflu.2013.01.024

Sharif, 2014, Experimental design of supercritical fluid extraction – a review, J. Food Eng., 124, 105, 10.1016/j.jfoodeng.2013.10.003

Reverchon, 2006, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids, 38, 146, 10.1016/j.supflu.2006.03.020

Chatterjee, 2014, Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: optimization of experimental process parameters, Algal Res., 3, 49, 10.1016/j.algal.2013.11.014

Solana, 2014, Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina, J. Supercrit. Fluids, 92, 311, 10.1016/j.supflu.2014.06.013

Taher, 2014, Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up, J. Supercrit. Fluids, 86, 57, 10.1016/j.supflu.2013.11.020

Li, 2014, A comparative study: the impact of different lipid extraction methods on current microalgal lipid research, Microb. Cell Factories, 13, 14, 10.1186/1475-2859-13-14

Nobre, 2013, A biorefinery from Nannochloropsis sp. microalga – extraction of oils and pigments. Production of biohydrogen from the leftover biomass, Bioresour. Technol., 135, 128, 10.1016/j.biortech.2012.11.084

Reyes, 2014, Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol, J. Supercrit. Fluids, 92, 75, 10.1016/j.supflu.2014.05.013

Seddon, 1999, Ionic liquid: designer solvents?, 131

Swapnil, 2012, Ionic liquids (a review): the green solvents for petroleum and hydrocarbon industries, Res. J. Chem. Sci., 2, 80

Carmichael, 2000, Selective sulfur removal from fuels using ionic liquids at room temperature, Chem. Commun., 4, 1237, 10.1039/b003335i

Salvo, 2011

Kim, 2002, Dipolarity, hydrogen-bond basicity and hydrogen-bond acidity of aqueous poly(ethylene glycol), Anal. Sci., 18, 1357, 10.2116/analsci.18.1357

Piemonte, 2014, Biodiesel production from microalgae: ionic liquid process simulation, Chem. Eng. Trans., 39, 379

Jessop, 2007, Gas-expanded liquids, Chem. Rev., 107, 2666, 10.1021/cr040199o

Du, 2013, Secondary amines as switchable solvents for lipid extraction from non-broken microalgae, Bioresour. Technol., 149, 253, 10.1016/j.biortech.2013.09.039

Phan, 2008, Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures, Ind. Eng. Chem. Res., 47, 539, 10.1021/ie070552r

Phan, 2008, Switchable-polarity solvents prepared with a single liquid component, J. Organomet. Chem., 73, 127, 10.1021/jo7017697

Boyd, 2012, Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production, Bioresour. Technol., 118, 628, 10.1016/j.biortech.2012.05.084

Samorì, 2013, Effective lipid extraction from algae cultures using switchable solvents, Green Chem., 15, 353, 10.1039/c2gc36730k

Jessop, 2011, Tertiary amine solvents having switchable hydrophilicity, Green Chem., 13, 619, 10.1039/c0gc00806k

Balasubramanian, 2010, Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization, Bioresour. Technol., 102, 3396, 10.1016/j.biortech.2010.09.119

Virot, 2008, Microwave-integrated extraction of total fats and oils, J. Chromatogr. A, 1196–1197, 57, 10.1016/j.chroma.2008.05.023

Amarni, 2010, Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction, Innovative Food Sci. Emerg. Technol., 11, 322, 10.1016/j.ifset.2010.01.002

Sostaric, 2012, Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris, New Biotechnol., 29, 325, 10.1016/j.nbt.2011.12.002

Refaat, 2008, Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation, Int. J. Environ. Sci. Technol., 5, 315, 10.1007/BF03326026

Benov, 2002, Disrupting Escherichia coli: a comparison of methods, J. Biochem. Mol. Biol., 35, 428

Pardo, 2009, Characterization of grape seed oil from different grape varieties (Vitis vinifera), Eur. J. Lipid Sci. Technol., 111, 188, 10.1002/ejlt.200800052

Adam, 2012, “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process, Bioresour. Technol., 114, 457, 10.1016/j.biortech.2012.02.096

Latif, 2011, Effect of aqueous enzymatic processes on sunflower oil quality, J. Am. Oil Chem. Soc., 86, 393, 10.1007/s11746-009-1357-8

Zhang, 2007, Optimization of the aqueous enzymatic extraction of rapeseed oil and protein hydrolysates, J. Am. Oil Chem. Soc., 84, 97, 10.1007/s11746-006-1004-6

Shankar, 1997, Enzymatic hydrolysis in conjunction with conventional pretreatments to soybean for enhanced oil availability and recovery, J. Am. Oil Chem. Soc., 74, 1543, 10.1007/s11746-997-0074-4

Perin, 2014, Biotechnological optimization of light use efficiency in Nannochloropsis cultures for biodiesel production, Chem. Eng. Trans., 37, 763

Leu, 2014, Advances in the production of high value products by microalgae, Ind. Biotechnol., 10, 169, 10.1089/ind.2013.0039

Boom, 2005, Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants, Org. Geochem., 36, 595, 10.1016/j.orggeochem.2004.10.017

Wang, 2015, Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans, Int. J. Mol. Sci., 16, 7707, 10.3390/ijms16047707

Chantanachat, 1962

Zeng, 2007, Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS, and rhamnolipid, in liquid culture media and compost matrix, Biodegradation, 18, 303, 10.1007/s10532-006-9064-8

Bergero, 2013, Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads, Biodegradation, 24, 353, 10.1007/s10532-012-9592-3

Nasirpour, 2014, A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis, Bioresour. Technol., 169, 33, 10.1016/j.biortech.2014.06.023

Cheng, 2014, Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition, Green Chem., 16, 2689, 10.1039/C3GC42494D

Ulloa, 2012, On the double role of surfactants as microalga cell lysis agents and antioxidants extractants, Green Chem., 14, 1044, 10.1039/c2gc16262h

Lai, 2014, Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus, Bioresour. Technol., 173, 457, 10.1016/j.biortech.2014.09.124

Gerken, 2013, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237, 239, 10.1007/s00425-012-1765-0

Corre, 1996, Influence of cell wall composition on the resistance of two Chlorella species (chlorophyta) to detergents, J. Phycol., 32, 584, 10.1111/j.0022-3646.1996.00584.x

Simpson, 2003, New insights on the structure of algaenan from Botryococcus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques, Phytochemistry, 62, 783, 10.1016/S0031-9422(02)00628-3

Huang, 2013, Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass, Bioresour. Technol., 149, 579, 10.1016/j.biortech.2013.09.095

Lai, 2012, Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6], Fuel, 95, 329, 10.1016/j.fuel.2011.11.001

Monteiro, 2012, Polymer nanoparticles via living radical polymerization in aqueous dispersions: design and applications, Macromolecules, 45, 4939, 10.1021/ma300170c

Gilbert, 2005, Cationic antiseptics: diversity of action under a common epithet, J. Appl. Microbiol., 99, 703, 10.1111/j.1365-2672.2005.02664.x

Rupprecht, 1991, Structure of adsorption layers of ionic surfactants at the solid/liquid interface, Colloid Polym. Sci., 269, 506, 10.1007/BF00655889

Cabral, 1992, Determination of the critical micelle concentration of dodecyl guanidine monoacetate (dodine), J. Colloid Interface Sci., 149, 567, 10.1016/0021-9797(92)90387-2

Russell, 1996, Sporistatic and sporicidal agents: their properties and mechanism of action

Yanfen, 2012, Energy analysis and environmental impacts of microalgal biodiesel in China, Energ Policy, 45, 142, 10.1016/j.enpol.2012.02.007

Kim, 2013, Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv., 31, 862, 10.1016/j.biotechadv.2013.04.006

Im, 2014, Concurrent extraction and reaction for the production of biodiesel from wet microalgae, Bioresour. Technol., 152, 534, 10.1016/j.biortech.2013.11.023

Bradley, 2011, Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures, Bioresour. Technol., 102, 2724, 10.1016/j.biortech.2010.11.026

Heldebrant, 2003, Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts, J. Am. Chem. Soc., 125, 5600, 10.1021/ja029131l

Kerton, 2009, Liquid polymers, 170

Vafaeezadeh, 2015, Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions, J. Mol. Liq., 207, 73, 10.1016/j.molliq.2015.03.003

Chen, 2011, Simple and efficient CuI/PEG-400 system for hydroxylation of aryl halides with potassium hydroxide, Catal. Commun., 12, 1463, 10.1016/j.catcom.2011.06.002

Kumar, 2011, Recyclable nanoparticulate copper mediated synthesis of naphthoxazinones in PEG-400: a green approach, Tetrahedron Lett., 52, 4835, 10.1016/j.tetlet.2011.07.016

Paiva, 2014, Natural deep eutectic solvents–solvents for the 21st century, ACS Sustain. Chem. Eng., 2, 1063, 10.1021/sc500096j

Zhang, 2012, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev., 41, 7108, 10.1039/c2cs35178a

Francisco, 2013, Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents, Angew. Chem. Int. Ed., 52, 3074, 10.1002/anie.201207548

Jeonga, 2015, Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media, J. Chromatogr. A, 1424, 10, 10.1016/j.chroma.2015.10.083

Smith, 2014, Deep eutectic solvents (DESs) and their applications, Chem. Rev., 114, 11060, 10.1021/cr300162p

Espino, 2016, Natural designer solvents for greening analytical chemistry, Trends Anal. Chem., 76, 126, 10.1016/j.trac.2015.11.006

Choi, 2011, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?, Plant Physiol., 156, 1701, 10.1104/pp.111.178426

Rengstl, 2014, Low-melting mixtures based on choline ionic liquids, Phys. Chem. Chem. Phys., 16, 22815, 10.1039/C4CP02860K

Dai, 2013, Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta, 766, 61, 10.1016/j.aca.2012.12.019

Verevkin, 2015, Separation performance of BioRenewable deep eutectic solvents, Ind. Eng. Chem. Res., 54, 3498, 10.1021/acs.iecr.5b00357

Kerton, 2009, Fluorous solvents and related systems, 143

Lemaire, 2004

Horvath, 1998, Fluorousbiphase chemistry, Acc. Chem. Res., 31, 641, 10.1021/ar970342i

Maruyama, 2007, Perfluorocarbon-based liquid-liquid extraction for separation of transition metal ions, Anal. Sci., 23, 763, 10.2116/analsci.23.763

Cantero, 2004, Determination of non-ionic polyethoxylated surfactants in sewage sludge by coacervative extraction and ion trap liquid chromatography–mass spectrometry, J. Chromatogr. A, 1046, 147, 10.1016/S0021-9673(04)01021-0

Gómez, 2010, Supramolecular solvents in the extraction of organic compounds. A review, Anal. Chim. Acta, 677, 108, 10.1016/j.aca.2010.07.027

Merino, 2003, Mixed aggregate-based acid-induced cloud-point extraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationic surfactants in sewage sludge, J. Chromatogr. A, 998, 143, 10.1016/S0021-9673(03)00565-X

Ballesteros-Gómez, 2007, Determination of bisphenols A and F and their diglycidyl ethers in wastewater and river water by coacervative extraction and liquid chromatography-fluorimetry, Anal. Chim. Acta, 603, 51, 10.1016/j.aca.2007.09.048

Ruiz, 2007, Vesicular coacervative extraction of bisphenols and their diglycidyl ethers from sewage and river water, J. Chromatogr. A, 1163, 269, 10.1016/j.chroma.2007.06.024

Günerken, 2015, Cell disruption for microalgae biorefineries, Biotechnol. Adv., 33, 243, 10.1016/j.biotechadv.2015.01.008

Halim, 2012, Extraction of oil from microalgae for biodiesel production: a review, Biotechnol. Adv., 30, 709, 10.1016/j.biotechadv.2012.01.001