Sustainable green solvents and techniques for lipid extraction from microalgae: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kumar, 2015, Lipid extraction methods from microalgae: a comprehensive review, Front. Energy Res., 2, 1
Cooney, 2009, Extraction of bio-oils from microalgae, Sep. Purif. Rev., 38, 291, 10.1080/15422110903327919
Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j
Arumugam, 2011, Microalgae: a renewable source for second generation biofuels, Curr. Sci., 100, 1141
Archanaa, 2012, Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method, Biomass Bioenergy, 46, 805, 10.1016/j.biombioe.2012.07.002
Folch, 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 226, 497, 10.1016/S0021-9258(18)64849-5
Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099
Meng, 2009, Biodiesel production from oleaginous microorganisms, Renew. Energy, 34, 1, 10.1016/j.renene.2008.04.014
Brennan, 2010, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009
Tanzi, 2012, Terpenes as green solvents for extraction of oil from microalgae, Molecules, 17, 8196, 10.3390/molecules17078196
Toplisek, 1995, Cleaning with d-limonenes: a substitute for chlorinated solvents, Precis. Clean., 3, 17
Chemat, 2012, Limonene as green solvent for extraction of natural products, 175
Chemat, 2012, Green extraction of natural products: concept and principles, Int. J. Mol. Sci., 13, 8615, 10.3390/ijms13078615
Li, 2016, The use of environmentally sustainable bio-derived solvents in solvent extraction applications—a review, Chin. J. Chem. Eng., 24, 215, 10.1016/j.cjche.2015.07.021
Iqbal, 2013, Microwave assisted lipid extraction from microalgae using biodiesel as cosolvent, Algal Res., 2, 34, 10.1016/j.algal.2012.10.001
Tanzi, 2013, New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process, Bioresour. Technol., 134, 271, 10.1016/j.biortech.2013.01.168
Santana, 2012, Supercritical carbondioxide extraction of algal lipids for the biodiesel production, Procedia Eng., 42, 1927, 10.1016/j.proeng.2012.07.569
Yen, 2015, Supercritical fluid extraction of valuable compounds from microalgal biomass, Bioresour. Technol., 184, 291, 10.1016/j.biortech.2014.10.030
Mouahid, 2013, Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling, J. Supercrit. Fluids, 77, 7, 10.1016/j.supflu.2013.01.024
Sharif, 2014, Experimental design of supercritical fluid extraction – a review, J. Food Eng., 124, 105, 10.1016/j.jfoodeng.2013.10.003
Reverchon, 2006, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids, 38, 146, 10.1016/j.supflu.2006.03.020
Chatterjee, 2014, Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: optimization of experimental process parameters, Algal Res., 3, 49, 10.1016/j.algal.2013.11.014
Solana, 2014, Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina, J. Supercrit. Fluids, 92, 311, 10.1016/j.supflu.2014.06.013
Taher, 2014, Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up, J. Supercrit. Fluids, 86, 57, 10.1016/j.supflu.2013.11.020
Li, 2014, A comparative study: the impact of different lipid extraction methods on current microalgal lipid research, Microb. Cell Factories, 13, 14, 10.1186/1475-2859-13-14
Nobre, 2013, A biorefinery from Nannochloropsis sp. microalga – extraction of oils and pigments. Production of biohydrogen from the leftover biomass, Bioresour. Technol., 135, 128, 10.1016/j.biortech.2012.11.084
Reyes, 2014, Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol, J. Supercrit. Fluids, 92, 75, 10.1016/j.supflu.2014.05.013
Seddon, 1999, Ionic liquid: designer solvents?, 131
Swapnil, 2012, Ionic liquids (a review): the green solvents for petroleum and hydrocarbon industries, Res. J. Chem. Sci., 2, 80
Carmichael, 2000, Selective sulfur removal from fuels using ionic liquids at room temperature, Chem. Commun., 4, 1237, 10.1039/b003335i
Salvo, 2011
Kim, 2002, Dipolarity, hydrogen-bond basicity and hydrogen-bond acidity of aqueous poly(ethylene glycol), Anal. Sci., 18, 1357, 10.2116/analsci.18.1357
Piemonte, 2014, Biodiesel production from microalgae: ionic liquid process simulation, Chem. Eng. Trans., 39, 379
Du, 2013, Secondary amines as switchable solvents for lipid extraction from non-broken microalgae, Bioresour. Technol., 149, 253, 10.1016/j.biortech.2013.09.039
Phan, 2008, Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures, Ind. Eng. Chem. Res., 47, 539, 10.1021/ie070552r
Phan, 2008, Switchable-polarity solvents prepared with a single liquid component, J. Organomet. Chem., 73, 127, 10.1021/jo7017697
Boyd, 2012, Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production, Bioresour. Technol., 118, 628, 10.1016/j.biortech.2012.05.084
Samorì, 2013, Effective lipid extraction from algae cultures using switchable solvents, Green Chem., 15, 353, 10.1039/c2gc36730k
Jessop, 2011, Tertiary amine solvents having switchable hydrophilicity, Green Chem., 13, 619, 10.1039/c0gc00806k
Balasubramanian, 2010, Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization, Bioresour. Technol., 102, 3396, 10.1016/j.biortech.2010.09.119
Virot, 2008, Microwave-integrated extraction of total fats and oils, J. Chromatogr. A, 1196–1197, 57, 10.1016/j.chroma.2008.05.023
Amarni, 2010, Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction, Innovative Food Sci. Emerg. Technol., 11, 322, 10.1016/j.ifset.2010.01.002
Sostaric, 2012, Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris, New Biotechnol., 29, 325, 10.1016/j.nbt.2011.12.002
Refaat, 2008, Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation, Int. J. Environ. Sci. Technol., 5, 315, 10.1007/BF03326026
Benov, 2002, Disrupting Escherichia coli: a comparison of methods, J. Biochem. Mol. Biol., 35, 428
Pardo, 2009, Characterization of grape seed oil from different grape varieties (Vitis vinifera), Eur. J. Lipid Sci. Technol., 111, 188, 10.1002/ejlt.200800052
Adam, 2012, “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process, Bioresour. Technol., 114, 457, 10.1016/j.biortech.2012.02.096
Latif, 2011, Effect of aqueous enzymatic processes on sunflower oil quality, J. Am. Oil Chem. Soc., 86, 393, 10.1007/s11746-009-1357-8
Zhang, 2007, Optimization of the aqueous enzymatic extraction of rapeseed oil and protein hydrolysates, J. Am. Oil Chem. Soc., 84, 97, 10.1007/s11746-006-1004-6
Shankar, 1997, Enzymatic hydrolysis in conjunction with conventional pretreatments to soybean for enhanced oil availability and recovery, J. Am. Oil Chem. Soc., 74, 1543, 10.1007/s11746-997-0074-4
Perin, 2014, Biotechnological optimization of light use efficiency in Nannochloropsis cultures for biodiesel production, Chem. Eng. Trans., 37, 763
Leu, 2014, Advances in the production of high value products by microalgae, Ind. Biotechnol., 10, 169, 10.1089/ind.2013.0039
Boom, 2005, Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants, Org. Geochem., 36, 595, 10.1016/j.orggeochem.2004.10.017
Wang, 2015, Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans, Int. J. Mol. Sci., 16, 7707, 10.3390/ijms16047707
Chantanachat, 1962
Zeng, 2007, Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS, and rhamnolipid, in liquid culture media and compost matrix, Biodegradation, 18, 303, 10.1007/s10532-006-9064-8
Bergero, 2013, Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads, Biodegradation, 24, 353, 10.1007/s10532-012-9592-3
Nasirpour, 2014, A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis, Bioresour. Technol., 169, 33, 10.1016/j.biortech.2014.06.023
Cheng, 2014, Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition, Green Chem., 16, 2689, 10.1039/C3GC42494D
Ulloa, 2012, On the double role of surfactants as microalga cell lysis agents and antioxidants extractants, Green Chem., 14, 1044, 10.1039/c2gc16262h
Lai, 2014, Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus, Bioresour. Technol., 173, 457, 10.1016/j.biortech.2014.09.124
Gerken, 2013, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237, 239, 10.1007/s00425-012-1765-0
Corre, 1996, Influence of cell wall composition on the resistance of two Chlorella species (chlorophyta) to detergents, J. Phycol., 32, 584, 10.1111/j.0022-3646.1996.00584.x
Simpson, 2003, New insights on the structure of algaenan from Botryococcus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques, Phytochemistry, 62, 783, 10.1016/S0031-9422(02)00628-3
Huang, 2013, Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass, Bioresour. Technol., 149, 579, 10.1016/j.biortech.2013.09.095
Lai, 2012, Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6], Fuel, 95, 329, 10.1016/j.fuel.2011.11.001
Monteiro, 2012, Polymer nanoparticles via living radical polymerization in aqueous dispersions: design and applications, Macromolecules, 45, 4939, 10.1021/ma300170c
Gilbert, 2005, Cationic antiseptics: diversity of action under a common epithet, J. Appl. Microbiol., 99, 703, 10.1111/j.1365-2672.2005.02664.x
Rupprecht, 1991, Structure of adsorption layers of ionic surfactants at the solid/liquid interface, Colloid Polym. Sci., 269, 506, 10.1007/BF00655889
Cabral, 1992, Determination of the critical micelle concentration of dodecyl guanidine monoacetate (dodine), J. Colloid Interface Sci., 149, 567, 10.1016/0021-9797(92)90387-2
Russell, 1996, Sporistatic and sporicidal agents: their properties and mechanism of action
Yanfen, 2012, Energy analysis and environmental impacts of microalgal biodiesel in China, Energ Policy, 45, 142, 10.1016/j.enpol.2012.02.007
Kim, 2013, Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv., 31, 862, 10.1016/j.biotechadv.2013.04.006
Im, 2014, Concurrent extraction and reaction for the production of biodiesel from wet microalgae, Bioresour. Technol., 152, 534, 10.1016/j.biortech.2013.11.023
Bradley, 2011, Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures, Bioresour. Technol., 102, 2724, 10.1016/j.biortech.2010.11.026
Heldebrant, 2003, Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts, J. Am. Chem. Soc., 125, 5600, 10.1021/ja029131l
Kerton, 2009, Liquid polymers, 170
Vafaeezadeh, 2015, Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions, J. Mol. Liq., 207, 73, 10.1016/j.molliq.2015.03.003
Chen, 2011, Simple and efficient CuI/PEG-400 system for hydroxylation of aryl halides with potassium hydroxide, Catal. Commun., 12, 1463, 10.1016/j.catcom.2011.06.002
Kumar, 2011, Recyclable nanoparticulate copper mediated synthesis of naphthoxazinones in PEG-400: a green approach, Tetrahedron Lett., 52, 4835, 10.1016/j.tetlet.2011.07.016
Paiva, 2014, Natural deep eutectic solvents–solvents for the 21st century, ACS Sustain. Chem. Eng., 2, 1063, 10.1021/sc500096j
Zhang, 2012, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev., 41, 7108, 10.1039/c2cs35178a
Francisco, 2013, Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents, Angew. Chem. Int. Ed., 52, 3074, 10.1002/anie.201207548
Jeonga, 2015, Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media, J. Chromatogr. A, 1424, 10, 10.1016/j.chroma.2015.10.083
Smith, 2014, Deep eutectic solvents (DESs) and their applications, Chem. Rev., 114, 11060, 10.1021/cr300162p
Espino, 2016, Natural designer solvents for greening analytical chemistry, Trends Anal. Chem., 76, 126, 10.1016/j.trac.2015.11.006
Choi, 2011, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?, Plant Physiol., 156, 1701, 10.1104/pp.111.178426
Rengstl, 2014, Low-melting mixtures based on choline ionic liquids, Phys. Chem. Chem. Phys., 16, 22815, 10.1039/C4CP02860K
Dai, 2013, Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta, 766, 61, 10.1016/j.aca.2012.12.019
Verevkin, 2015, Separation performance of BioRenewable deep eutectic solvents, Ind. Eng. Chem. Res., 54, 3498, 10.1021/acs.iecr.5b00357
Kerton, 2009, Fluorous solvents and related systems, 143
Lemaire, 2004
Maruyama, 2007, Perfluorocarbon-based liquid-liquid extraction for separation of transition metal ions, Anal. Sci., 23, 763, 10.2116/analsci.23.763
Cantero, 2004, Determination of non-ionic polyethoxylated surfactants in sewage sludge by coacervative extraction and ion trap liquid chromatography–mass spectrometry, J. Chromatogr. A, 1046, 147, 10.1016/S0021-9673(04)01021-0
Gómez, 2010, Supramolecular solvents in the extraction of organic compounds. A review, Anal. Chim. Acta, 677, 108, 10.1016/j.aca.2010.07.027
Merino, 2003, Mixed aggregate-based acid-induced cloud-point extraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationic surfactants in sewage sludge, J. Chromatogr. A, 998, 143, 10.1016/S0021-9673(03)00565-X
Ballesteros-Gómez, 2007, Determination of bisphenols A and F and their diglycidyl ethers in wastewater and river water by coacervative extraction and liquid chromatography-fluorimetry, Anal. Chim. Acta, 603, 51, 10.1016/j.aca.2007.09.048
Ruiz, 2007, Vesicular coacervative extraction of bisphenols and their diglycidyl ethers from sewage and river water, J. Chromatogr. A, 1163, 269, 10.1016/j.chroma.2007.06.024
Günerken, 2015, Cell disruption for microalgae biorefineries, Biotechnol. Adv., 33, 243, 10.1016/j.biotechadv.2015.01.008