Sustainable colorimetric/luminescent sensors enabled by armored lipid nanoparticles
Tóm tắt
In this study, we developed a highly stable polymeric vesicle using a nanosilica-armor membrane to achieve a sustainable colorimetric/luminescent response. The silica armor can be grown directly as ~ 5 nm spherical nanoparticles on the surface of the diacetylene (DA) vesicle with liposomal structure. This can be accomplished via the modified Stöber reaction in pure water on a layer of amine linkers deposited on the vesicles. Once formed, the structural stability of the DA vesicles dramatically increased and remained so even in a dried powder form that could be stored for a period of approximately 6 months. Then, redispersed in water, the armored vesicles did not agglomerate because of the electric charge of the silica armor. After polymerization, the polydiacetylene (PDA) vesicles maintained an average of 87.4% their sensing capabilities compared to unstored vesicles. Furthermore, the silica membrane thickness can be controlled by reiteration of the electrostatic layer-by-layer approach and the direct hydrolysis of silica. As the number of silica armor membranes increases, the passage of the stimuli passing through the membranes becomes longer. Consequently, three layers of silica armor gave the PDA vesicles size-selective recognition to filter out external stimuli. These discoveries are expected to have large-scale effects in the chemo- and biosensor fields by applying protective layers to organic nanomaterials.
Tài liệu tham khảo
S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007). https://doi.org/10.1021/cr050149z
D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000). https://doi.org/10.1021/cr9801014
D.J. Ahn, J.-M. Kim, Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors. Acc. Chem. Res. 41, 805–816 (2008). https://doi.org/10.1021/ar7002489
J.W. Lauher, F.W. Fowler, N.S. Goroff, Single-crystal-to-single-crystal topochemical polymerizations by design. Acc. Chem. Res. 41, 1215–1229 (2008). https://doi.org/10.1021/ar8001427
D.J. Ahn, S. Lee, J.-M. Kim, Rational design of conjugated polymer supramoleculeswith tunable colorimetric responses. Adv. Funct. Mater. 19, 1483–1496 (2009). https://doi.org/10.1002/adfm.200801074
B. Yoon, D.-Y. Ham, O. Yarimaga, H. An, C.W. Lee, J.-M. Kim, Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv. Mater. 23, 5492–5497 (2011). https://doi.org/10.1002/adma.201103471
S. Okada, S. Peng, W. Spevak, D. Charych, Color and chromism of polydiacetylene vesicles. Acc. Chem. Res. 31, 229–239 (1998). https://doi.org/10.1002/CHIN.199833318
S.W. Lee, C.D. Kang, D.H. Yang, J.S. Lee, J.-M. Kim, D.J. Ahn, S.J. Sim, The development of a generic bioanalytical matrix using polydiacetylenes. Adv. Funct. Mater. 17, 2038–2044 (2007). https://doi.org/10.1002/adfm.200600398
K.P. Kootery, H. Jiang, S. Kolusheva, T.P. Vinod, M. Ritenberg, L. Zeiri, R. Volinsky, D. Malferrari, P. Galletti, E. Tagliavini, R. Jelinek, Poly(methyl methacrylate)-supported polydiacetylene films: unique chromatic transitions and molecular sensing. ACS Appl. Mater. Interfaces 6, 8613–8620 (2014). https://doi.org/10.1021/am501414z
Y.K. Choi, S.Y. Lee, D.J. Ahn, Hyperconjugation-induced chromism in linear responsive polymers. J. Mater. Chem. C 7, 13130 (2019). https://doi.org/10.1039/C9TC03204E
T. Kim, D. Moon, J.H. Park, H. Yang, S. Cho, T.H. Park, D.J. Ahn, Visual detection of odorant geraniol enabled by integration of a human olfactory receptor into polydiacetylene/lipid nano-assembly. Nanoscale 11, 7582–7587 (2019). https://doi.org/10.1039/C9NR00249A
V. Zhdanov, B. Kasemo, Comments on rupture of adsorbed vesicles. Langmuir 17, 3518–3521 (2001). https://doi.org/10.1021/la001512u
U. Jonas, K. Shah, S. Norvez, D.H. Charych, Reversible color switching and unusual solution polymerization of hydrazide-modified diacetylene lipids. J. Am. Chem. Soc. 121, 4580–4588 (1999). https://doi.org/10.1021/ja984190d
T.D. Dinh, M.N. Phan, D.T. Nguyen, T.M.D. Le, A.K. Nadda, A.L. Srivastav, T.N.M. Pham, T.D. Pham, Removal of beta-lactam antibiotic in water environment by adsorption technique using cationic surfactant functionalized nanosilica rice husk. Environ. Res. 210, 112943 (2022). https://doi.org/10.1016/j.envres.2022.112943
T.N. Vu, P.H.P. Le, D.N.P. Pham, T.H. Hoang, A.K. Nadda, T.S. Le, T.D. Pham, Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants. Chemosphere 307, 135856 (2022). https://doi.org/10.1016/j.chemosphere.2022.135856
S.H. Yang, J.H. Park, W.K. Cho, H.-S. Lee, I.S. Choi, Counteranion-directed, biomimetic control of silica nanostructures on surfaces inspired by biosilicification found in diatoms. Small 5, 1947–1951 (2009). https://doi.org/10.1002/smll.200900440
S.H. Yang, D. Hong, J. Lee, E.H. Ko, I.S. Choi, Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells. Small 9, 178–186 (2013). https://doi.org/10.1002/smll.201202174
J.H. Park, D. Hong, J. Lee, I.S. Choi, Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Acc. Chem. Res. 49, 792–800 (2016). https://doi.org/10.1021/acs.accounts.6b00087
A. Burns, P. Sengupta, T. Zedayko, B. Baird, U. Wiesner, Core/shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2, 723–726 (2006). https://doi.org/10.1002/smll.200600017
I. Acquah, J. Roh, D.J. Ahn, Dual-fluorophore silica microspheres for ratiometric acidic pH sensing. Macromol. Res. 25, 950–955 (2017). https://doi.org/10.1007/s13233-017-5117-6
S.H. Joo, J.Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G.A. Somorjai, Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009). https://doi.org/10.1038/NMAT2329
Y. Su, Preparation of polydiacetylene/silica nanocomposite for use as a chemosensor. React. Funct. Polym. 66, 967–973 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.01.021
A. Nopwinyuwong, W. Boonsupthip, C. Pechyen, P. Suppakul, Formation of polydiacetylene/silica nanocomposite as a colorimetric indicator: effect of time and temperature. Adv. Polym. Sci. 32, E724–E731 (2013). https://doi.org/10.1002/adv.21315
H. Peng, J. Tang, J. Pang, D. Chen, L. Yang, H.S. Ashbaugh, C.J. Brinker, Z. Yang, Y. Lu, Polydiacetylene/silica nanocomposites with tunable mesostructure and thermochromatism from diacetylenic assembling molecules. J. Am. Chem. Soc. 127, 12782–12783 (2005). https://doi.org/10.1021/ja053966p
S.-H. Wu, C.-Y. Mou, H.-P. Lin, Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42, 3862–3875 (2013). https://doi.org/10.1021/ja053966p
J.J. Richardson, M. Bjornmalm, F. Caruso, Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015). https://doi.org/10.1126/science.aaa2491
J.J. Richardson, J. Cui, M. Bjornmalm, J.A. Braunger, H. Ejima, F. Caruso, Innovation in layer-by-layer assembly. Chem. Rev. 116, 14828–14867 (2016). https://doi.org/10.1021/acs.chemrev.6b00627
S. Che, A.E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat. Mater. 2, 801–805 (2003). https://doi.org/10.1039/c3cs35405a
D.H. Hubert, M. Jung, P.M. Frederik, P.H.H. Bomans, J. Meuldijk, A.L. German, Vesicle-directed growth of silica. Adv. Mater. 12, 1286–1290 (2000). https://doi.org/10.1002/1521-4095(200009)12:17%3c1286::AID-ADMA1286%3e3.0.CO;2-7
C.J. Brinker, Hydrolysis and condensation of silicates: effects on structure. J. Non-Cryst. Solids 100, 31–50 (1988). https://doi.org/10.1016/0022-3093(88)90005-1
C.L. Apel, D.W. Deamer, M.N. Mautner, Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta Biomembr. 1559, 1–9 (2002). https://doi.org/10.1016/S0005-2736(01)00400-X
A. Chanakul, N. Traiphol, K. Faisadcha, R. Traiphol, Dual colorimetric response of polydiacetylene/zinc oxide nanocomposites to low and high pH. J. Coll. Interf. Sci. 418, 43–51 (2014). https://doi.org/10.1016/j.jcis.2013.11.083
L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, Y. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054–6057 (2005). https://doi.org/10.1002/anie.200501907
C. Li, Y. Zhu, X. Zhang, X. Yang, C. Li, Metal-enhanced fluorescence of carbon dots adsorbed Ag@SiO2 core-shell nanoparticles. RSC Adv. 2, 1765–1768 (2012). https://doi.org/10.1039/C2RA01032A
D.G. Abebe, T.R. Farhat, Self-assembly of Nafion®/Poly(vinyl alcohol) at pH = 1.2 and Nafion®/Poly(allyl amine) at pH = 11. Soft Matter 6, 1325–1335 (2010). https://doi.org/10.1039/B922653B
J.J.M. Cornejo, E. Matsuoka, H. Daiguji, Size control of hollow poly-allylamine hydrochloride/poly-sodium styrene sulfonate microcapsules using the bubble template method. Soft Matter 7, 1897–1902 (2011). https://doi.org/10.1039/C0SM00867B
W. Fang, X. Chen, N. Zheng, Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins. J. Mater. Chem. 20, 8624–8630 (2010). https://doi.org/10.1039/C0JM02081H
J. Sanchez, A. McCormick, Kinetic and thermodynamic study of the hydrolysis of silicon alkoxides in acidic alcohol solutions. J. Phy. Chem. 96, 8973–8979 (1992). https://doi.org/10.1021/j100201a051
S. Manne, J. Cleveland, H. Gaub, G. Stucky, P. Hansma, Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir 10, 4409–4413 (1994). https://doi.org/10.1021/la00024a003
S. Lee, J.-M. Kim, α-Cyclodextrin: a molecule for testing colorimetric reversibility of polydiacetylene supramolecules. Macromol. 40, 9201–9204 (2007). https://doi.org/10.1021/ma702492z
G.J. Exarhos, W.M. Risen Jr., R.H. Baughman, Resonance Raman study of the thermochromic phase transition of a polydiacetylene. J. Am. Chem. Soc. 98, 481–487 (1976). https://doi.org/10.1021/ja00418a026
M.-K. Park, K.-W. Kim, D.J. Ahn, M.-K. Oh, Label-free detection of bacterial RNA using polydiacetylene-based biochip. Biosens. Bioelectron. 35, 44–49 (2012). https://doi.org/10.1016/j.bios.2012.01.043
Y. Lifshitz, A. Upcher, O. Shusterman, B. Horovitz, A. Berman, Y. Golan, Phase transition kinetics in langmuir and spin-coated polydiacetylene films. Phys. Chem. Chem. Phys. 12, 713–722 (2010). https://doi.org/10.1039/B915527A
A. Ryzhakov, T.D. Thi, J. Stappaerts, L. Bertoletti, K. Kimpe, A.R.S. Couto, P. Saokham, G. Van den Mooter, P. Augustijns, G.W. Somsen, S. Kurkov, S. Inghelbrecht, A. Arien, M.I. Jimidar, K. Schrijnemakers, T. Loftsson, Self-assembly of cyclodextrins and their complexes in aqueous solutions. J. Pharm. Sci. 105, 2556–2569 (2016). https://doi.org/10.1016/j.xphs.2016.01.019
M. Messner, S.V. Kurkov, P. Jansook, T. Loftsson, Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199–208 (2010). https://doi.org/10.1016/j.ijpharm.2009.11.035
K. Kuperkar, L. Abezgauz, K. Prasad, P. Bahadur, Formation and growth of micelles in dilute aqueous CTAB solutions in the presence of NaNO3 and NaClO3. J. Surfactants Deterg. 13, 293–303 (2010). https://doi.org/10.1007/s11743-009-1173-z
J.-M. Kim, Y.B. Lee, D.H. Yang, J.S. Lee, G.S. Lee, D.J. Ahn, A polydiacetylene-based fluorescent sensor chip. J. Am. Chem. Soc. 127, 17580–17581 (2005). https://doi.org/10.1021/ja0547275
D.J. Ahn, E.-H. Chae, G.S. Lee, H.-Y. Shim, T.-E. Chang, K.-D. Ahn, J.-M. Kim, Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli. J. Am. Chem. Soc. 125, 8976–8977 (2003). https://doi.org/10.1021/ja0299001
J.H. Park, H. Choi, C. Cui, D.J. Ahn, Capillary-driven sensor fabrication of polydiacetylene-on-silica plate in 30 seconds: facile utilization of π-monomers with C18- to C25-long alkyl chain. ACS Omega 2, 7444–7450 (2017). https://doi.org/10.1021/acsomega.7b01141
C. Cui, N.Y. Hong, D.J. Ahn, Monitoring based on narrow-band resonance Raman for “phase-shifting” π-conjugated polydiacetylene vesicles upon host-guest interaction and thermal stimuli. Small 14, 1800512 (2018). https://doi.org/10.1002/smll.201800512
J.-T. Cho, S.-M. Woo, D.J. Ahn, K.-D. Ahn, H. Lee, J.-M. Kim, Cyclodextrin-induced color changes in polymerized diacetylene langmuir-schaefer films. Chem. Lett. 32, 282–283 (2003). https://doi.org/10.1246/cl.2003.282
J.-M. Kim, S.K. Chae, Y.B. Lee, J.-S. Lee, G.S. Lee, T.-Y. Kim, D.J. Ahn, Polydiacetylene supramolecules embedded in PVA film for strip-type chemosensors. Chem. Lett. 35, 560–561 (2006). https://doi.org/10.1246/cl.2006.560
Y. Scindia, L. Silbert, R. Volinsky, S. Kolusheva, R. Jelinek, Colorimetric detection and fingerprinting of bacteria by glass-supported lipid/polydiacetylene films. Langmuir 23, 4682–4687 (2007). https://doi.org/10.1021/la0636208