Thiết kế bền vững của hệ thống thoát nước mưa đô thị bằng cách áp dụng biện pháp bể chứa và phát triển tác động thấp cho kiểm soát rủi ro ngập lụt và quản lý chất lượng nước
Tóm tắt
Từ khóa
#thiết kế bền vững #hệ thống thoát nước mưa đô thị #kiểm soát ngập lụt #quản lý chất lượng nước #bể chứa #phát triển tác động thấpTài liệu tham khảo
CDOWE (Code for Design of Outdoor Wastewater Engineering) (2014). Design manuel for outdoor wastewater engineering. The People's Republic of China Ministry of Housing and Urban Rural Development, pp 12–28
Chan K, Tam K, Leung Y (2010) Integrated planning and design of a flood relief project for sheung wan low-lying area. HKIE Civil Division Conference – Infrastructure Solutions for Tomorrow, 12-14 April 2010, Hong Kong
Chui TFM, Liu X, Zhan W (2016) Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J Hydrol 533:353–364
CURCNC (Committee of Urban and Rural Construction of Nanning City of China) (2015) Construction Technology for Sponge City in Nanning City of China – Standard Atlas of LID-Based Rainwater Control and Engineering Design (Trial). CURCNC. http://www.nnjs.gov.cn/
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lect Notes Comput Sci 1917:849–858
DSDHK (Drainage Services Department of Hong Kong Government) (2019) DSDHK. http://www.dsd.gov.hk/EN/Home/index.html. Accessed May 2019
Duan HF, Li F, Tao T (2016a) Multi-objective optimal design of detention tanks in the urban stormwater drainage system: uncertainty and sensitivity analysis. Water Resour Manag 30(7):2213–2226
Duan HF, Li F, Yan H (2016b) Multi-objective optimal design of detention tanks in the urban stormwater drainage system: LID implementation and analysis. Water Resour Manag 30(13):4635–4648
Elliott AH, Trowsdale SA (2007) A review of models for low impact urban stormwater drainage. Environ Model Softw 22(2007):394–405
Field R, Pitt RE (1990) Urban storm-induced discharge impacts: US Environmental Protection Agency research program review. Water Sci Technol 22(10-11):1–7
Guo Y, Adams BJ (1999) An analytical probabilistic approach to sizing flood control detention facilities. Water Resour Res 35(8):2457–2468
IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. In: Field, Barros et al (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Li X (2003) A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Genetic and evolutionary computation – GECCO, Springer Berlin Heidelberg, pp 37–48
Li H, Li T (2006) Study on the characterization of combined sewer overflow from the high density residential area in Shanghai (in Chinese). Environ Sci 27(8):1565–1569
Li F, Duan HF, Tao T, Yan HX (2015) Multi-objective optimal design of detention tanks in the urban stormwater drainage system: framework development and case study. Water Resour Manag 29(7):2125–2137
Lin LF (2006) Monitoring and characterization of urban runoff pollution in Shanghai. MPhil Thesis (Chinese), Tongji University, Shanghai, China
Mays LW, Bedient PB (1982) Model for optimal size and location of detention. J Water Resour Plan Manag, ASCE 108(3):270–285
MHURDC (Ministry of Housing and Urban-Rural Development of China) (2014) Manuel of Construction Technology for Sponge City in China – LID-Based Rainwater System (Trial). MHURDC. http://www.mohurd.gov.cn/
Rossman LA (2004) Storm water management model (Ver5.0). National Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati
Tao T, Wang J, Xin K, Li S (2014) Multi-objective optimal layout of distributed storm-water detention. International Journal of Environmental Science & Technology 11(5):1473–1480
Travis QB, Mays LW (2008) Optimizing retention basin networks. J Water Resour Plan Manag, ASCE 134(5):432–439
Tsihrintzis VA, Hamid R (1997) Modeling and management of urban stormwater runoff quality: a review. Water Resour Manag 11(2):136–164
Vogel JR, Moore TL, Coffman RR, Rodie SN, Hutchinson SL, McDonough KR, McLemore AJ, McMaine JT (2015) Critical review of technical questions facing low impact development and green infrastructure: a perspective from the great plains. Water Environ Res 87(9):849–862
Willems P (2013) Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. J Hydrol 496:166–177
Zhou Q (2014) A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, MDPI 6:976–992