Đánh giá tính bền vững trong các quy trình thiết kế đổi mới: vị trí, vai trò và điều kiện sử dụng trong các hệ thống nông sản thực phẩm. Một tổng quan

Aurélie Perrin1, Gwenola Bertoluci2, Frédérique Angevin3, Caroline Pénicaud2
1USC 1422 GRAPPE, Univ. Bretagne Loire, École Supérieure d’Agricultures (ESA)-INRAE, SFR 4207 QUASAV, 55 rue Rabelais, 49007, Angers, France
2Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
3INRAE, Eco-Innov, 78850, Thiverval-Grignon, France

Tóm tắt

Tóm tắtĐối mặt với cuộc khủng hoảng sinh thái và xã hội mà các hệ thống thực phẩm nông sản đang trải qua, cần có một sự chuyển đổi sâu sắc trong hệ thống thực phẩm, yêu cầu sự đổi mới hệ thống và bền vững. Các đánh giá tính bền vững thường được thực hiện để xác định và/hoặc xác thực sự cải thiện về tính bền vững mà một sản phẩm thiết kế mang lại so với tình hình hiện tại hoặc tiêu chuẩn. Tuy nhiên, chúng có thể mang lại nhiều lợi ích khác trong quy trình thiết kế. Ở đây, chúng tôi xem xét vị trí, vai trò và các điều kiện sử dụng của đánh giá tính bền vững trong các quy trình thiết kế đổi mới trong các hệ thống nông sản thực phẩm. Bằng cách đối chiếu các kết quả đã công bố và kinh nghiệm của riêng chúng tôi, chúng tôi chính thức hóa một quy trình thiết kế làm nổi bật vị trí của đánh giá tính bền vững, cho dù thiết kế nhằm tạo ra một sản phẩm nông nghiệp hoặc thực phẩm. Chúng tôi xác định ba loại đánh giá: chẩn đoán ban đầu, sàng lọc giữa các giải pháp ở giai đoạn hình khái niệm, và đánh giá ở giai đoạn nguyên mẫu và phát triển. Chúng tôi thảo luận về các phương pháp thực hiện mỗi đánh giá này và làm nổi bật các điểm chính chung về đánh giá tính bền vững. Một bộ điểm chính đầu tiên liên quan đến tiêu chí và chỉ số, một bộ thứ hai liên quan đến vai trò của các bên liên quan, một bộ thứ ba liên quan đến tính thích ứng của đánh giá, và bộ cuối cùng liên quan đến việc xem xét sự không chắc chắn. Những điểm chính này cung cấp hướng dẫn cho đánh giá hiệu quả trong thiết kế các đổi mới nhằm tăng cường tính bền vững của các hệ thống nông sản thực phẩm. Do đó, chúng tôi chứng minh rằng quy trình thiết kế các đổi mới cho các hệ thống nông sản thực phẩm bền vững yêu cầu (1) hình thức hóa vị trí và cách thức đánh giá, (2) sử dụng các tiêu chí và chỉ số bền vững phù hợp, (3) tăng cường các thực hành tham gia, và (4) điều chỉnh việc đánh giá cho phù hợp với ngữ cảnh của sản phẩm thiết kế, để tạo điều kiện cho việc lựa chọn giữa các giải pháp không hoàn hảo. Cách tiếp cận như vậy nhằm thúc đẩy các đổi mới đáp ứng mong đợi của các bên liên quan trực tiếp trong hệ thống, nhưng cũng tích hợp nhu cầu của các tác nhân vô hình như môi trường hoặc phúc lợi của cộng đồng.

Từ khóa


Tài liệu tham khảo

Ackoff RL (1989) From data to wisdom. Journal of Applied Systems 15:3–9

Ackoff RL (1994) Systems thinking and thinking systems. Syst Dyn Rev 10:175–188. https://doi.org/10.1002/sdr.4260100206

Akrich M (2013) La description des objets techniques. In: Callon M, Latour B (eds) Sociologie de la traduction. Presses des Mines, pp 159–178

Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42. https://doi.org/10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2

Ardente F, Beccali M et al (2004) FALCADE: a fuzzy software for the energy and environmental balances of products. Ecol Model 176:359–379

Arvidsson R, Tillman A-M, Sandén BA et al (2018) Environmental assessment of emerging technologies: recommendations for prospective LCA. J Ind Ecol 22:1286–1294. https://doi.org/10.1111/jiec.12690

Baker D, Bridges D, Hunter R et al. (2002) Guidebook to decision-making methods. WSRC-IM-2002-00002, Department of Energy, USA

Benner M (2005) The chain information model: a systematic approach for food product development. PhD thesis Wageningen, The Netherland. https://edepot.wur.nl/121698

Bergez JE, Colbach N, Crespo O et al (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9. https://doi.org/10.1016/j.eja.2009.06.001

Berthet ETA, Barnaud C, Girard N et al (2016) How to foster agroecological innovations? A comparison of participatory design methods. J Environ Planning Manage 59:280–301. https://doi.org/10.1080/09640568.2015.1009627

Bertoluci G, Yannou B, Attias D, Vallet E (2013) A categorization of innovation funnels of companies as a way to better make conscious agility and permeability of innovation processes. In: Chakrabarti A, Prakash RV (eds) ICoRD’13. Springer India, India, pp 721–734

Bockstaller C, Feschet P, Angevin F (2015) Issues in evaluating sustainability of farming systems with indicators. OCL 22:D102. https://doi.org/10.1051/ocl/2014052

Bockstaller C, Beauchet S, Manneville V et al (2017) A tool to design fuzzy decision trees for sustainability assessment. Environ Model Softw 97:130–144. https://doi.org/10.1016/j.envsoft.2017.07.011

Bockstaller C, Angevin F, Bergez JE et al (2019) L’évaluation multicritère des systèmes agricoles : une révolution des méthodes. In: Richard G, Stengel P, Lemaire G et al (eds) Une agronomie pour le XXIe siècle. Quae, Paris, pp 150–162

Bohanec M (2020) DEXi: Program for multicriteria decision making, User’s manual, Version 5.04. IJS Report DP-13100. Jožef Stefan Institute, Ljubljana

Bonnafous-Boucher M, Rendtorff JD (2014) La théorie des parties prenantes. La Découverte

Booz, Hamilton, Allen (1982) New products management for the 1980s. Booz, Allen & Hamilton, New York

Brun J (2017) Modéliser le pouvoir expansif de la structuration des connaissances en conception innovante : mise en évidence des effets génératifs du K-preordering grâce à l’étude du non-verbal. PhD Thesis Paris Sciences et Lettres, Paris

Byerlee D, Harrington L, Winkelmann DL (1982) Farming systems research: issues in research strategy and technology design. Am J Agr Econ 64:897–904. https://doi.org/10.2307/1240753

Calero M, Clemente G, Fartdinov D et al (2022) Upscaling via a prospective LCA: a case study on tomato homogenate using a near-to-market pasteurisation technology. Sustainability 14:1716. https://doi.org/10.3390/su14031716

Callon M (2013) Sociologie de l’acteur réseau In Akrich M, Callon M, Latour B (Eds.), Sociologie de la traduction, Presses des Mines, 267-276

Carlsson L, Callaghan E, Morley A, Broman G (2017) Food system sustainability across scales: a proposed local-to-global approach to community planning and assessment. Sustainability 9:1061. https://doi.org/10.3390/su9061061

Cerf M, Jeuffroy MH, Prost L, Meynard JM (2012) Participatory design of agricultural decision support tools: taking account of the use situations. Agron Sustain Dev 32:899–910. https://doi.org/10.1007/s13593-012-0091-z

Chaudhary A, Gustafson D, Mathys A (2018) Multi-indicator sustainability assessment of global food systems. Nat Commun 9:848. https://doi.org/10.1038/s41467-018-03308-7

Chebaeva N, Lettner M, Wenger J et al (2021) Dealing with the eco-design paradox in research and development projects: the concept of sustainability assessment levels. J Clean Prod 281:125232. https://doi.org/10.1016/j.jclepro.2020.125232

Chesbrough HW (2003) Open innovation: the new imperative for creating and profiting from technology. Harvard Business School Press, Cambridge

Chopin P, Mubaya CP, Descheemaeker K et al (2021) Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A Review. Agron Sustain Dev 41:19. https://doi.org/10.1007/s13593-021-00674-3

Cicciù B, Schramm F, Schramm VB (2022) Multi-criteria decision making/aid methods for assessing agricultural sustainability: a literature review. Environ Sci Policy 138:85–96. https://doi.org/10.1016/j.envsci.2022.09.020

Cooper RG (1990) Stage-gate systems: a new tool for managing new products. Bus Horiz 33:44–54. https://doi.org/10.1016/0007-6813(90)90040-I

Coteur I, Wustenberghs H, Debruyne L et al (2020) How do current sustainability assessment tools support farmers’ strategic decision making? Ecol Ind 114:106298. https://doi.org/10.1016/j.ecolind.2020.106298

Crilly N, Cardoso C (2017) Where next for research on fixation, inspiration and creativity in design? Des Stud 50:1–38. https://doi.org/10.1016/j.destud.2017.02.001

Davenport TH (1993) Process innovation: reengineering work through information technology. Harvard Business School Press, Boston, Mass

De Luca AI, Iofrida N, Leskinen P et al (2017) Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: insights from a systematic and critical review. Sci Total Environ 595:352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284

de Olde EM, Moller H, Marchand F et al (2017) When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environ Dev Sustain 19:1327–1342. https://doi.org/10.1007/s10668-016-9803-x

Diaz-Balteiro L, González-Pachón J, Romero C (2017) Measuring systems sustainability with multi-criteria methods: a critical review. Eur J Oper Res 258:607–616. https://doi.org/10.1016/j.ejor.2016.08.075

Doré T, Clermont-Dauphin C, Crozat Y et al (2008) Methodological progress in on-farm regional agronomic diagnosis. A Review. Agron Sustain Dev 28:151–161. https://doi.org/10.1051/agro:2007031

Earle M, Earle MD, Earle R (1999) Creating new foods: the product developer’s guide. Chandos, Oxford

Eckert C, Bertoluci G, Yannou B (2014) Handling subjective product properties in engineering, food and fashion. In: DS 77: Proceedings of the DESIGN 2014 13th International Design Conference. the Design Society, University of Zagreb Faculty of Mechanical Engineering and Naval Architecture, Dubrovnik, Croatia, pp 791–800

El Bilali H (2019) The multi-level perspective in research on sustainability transitions in agriculture and food systems: a systematic review. Agriculture 9(4):74. https://doi.org/10.3390/agriculture9040074

Elkington J (1997) Cannibals with forks: the triple bottom line of 21st century business. Capstone Publishing, Oxford

European Commission (2017) PEFCR Guidance document, Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.3, December 2017

FAO (2014) SAFA (Sustainability Assessment of Food and Agriculture systems) Tool: User Manual Version 2.2.40. 30

Feschet P, Macombe C, Garrabé M et al (2013) Social impact assessment in LCA using the Preston pathway. Int J Life Cycle Assess 18:490–503. https://doi.org/10.1007/s11367-012-0490-z

Gazan R, Barré T, Perignon M et al (2018) A methodology to compile food metrics related to diet sustainability into a single food database: application to the French case. Food Chemistry 238:125–133. https://doi.org/10.1016/j.foodchem.2016.11.083

Gésan-Guiziou G, Alaphilippe A, Aubin J et al (2020) Diversity and potentiality of multi-criteria decision analysis methods for agri-food research. Agron Sustain Dev 40:44. https://doi.org/10.1007/s13593-020-00650-3

Hatchuel A, Weil B (2009) C-K design theory: an advanced formulation. Res Eng Design 19:181–192. https://doi.org/10.1007/s00163-008-0043-4

Hélias A, van der Werf HMG, Soler L-G et al (2022) Implementing environmental labelling of food products in France. Int J Life Cycle Assess 27:926–931. https://doi.org/10.1007/s11367-022-02071-8

IPCC (2019) Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystem — Summary for Policymakers — Special Report on Climate Change and Land. https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/. Accessed 12 Oct 2020

ISO 14040 (2006) Environmental management - Life cycle assessment - Principles and framework, Second edition. International Organization for Standardization, Geneva, Switzerland

Jeuffroy M-H, Loyce C, Lefeuvre T et al (2022) Design workshops for innovative cropping systems and decision-support tools: learning from 12 case studies. Eur J Agron 139:126573. https://doi.org/10.1016/j.eja.2022.126573

Keeney R, Raiffa H (1976) Decisions with multiple objectives: performances and value trade-offs. Wiley, New York

Kimbell L (2011) Rethinking design thinking: part I. Des Cult 3(3):285–306. https://doi.org/10.2752/175470811X13071166525216

Kline S, Rosenberg N (1986) An overview of innovation. In: Landau R, Rosenberg N (eds) The positive sum strategy: harnessing technology for economic growth. National Academy Press, Washington DC, pp 275–304

Lairez J, Feschet P, Aubin J, et al. (2015) Agriculture et développement durable: Guide pour l’évaluation multicritère. Versailles: Ed. Quae, Educagri Editions, 226pp

Lampridi MG, Sørensen CG, Bochtis D (2019) Agricultural sustainability: a review of concepts and methods. Sustainability 11:5120. https://doi.org/10.3390/su11185120

Lançon J, Wery J, Rapidel B et al (2007) An improved methodology for integrated crop management systems. Agron Sustain Dev 27:101–110. https://doi.org/10.1051/agro:2006037

Le Gal P-Y, Dugué P, Faure G, Novak S (2011) How does research address the design of innovative agricultural production systems at the farm level? A review. Agric Syst 104:714–728. https://doi.org/10.1016/j.agsy.2011.07.007

Le Masson P, Weil B, Hatchuel A (2006) Les processus d’innovation : conception innovante et croissance des entreprises. Lavoisier, Paris

Lesur-Dumoulin C, Laurent A, Reau R et al (2018) Co-design and ex ante assessment of cropping system prototypes including energy crops in Eastern France. Biomass Bioenerg 116:205–215. https://doi.org/10.1016/j.biombioe.2018.06.013

Martin G, Martin-Clouaire R, Duru M (2013) Farming system design to feed the changing world. A Review. Agron Sustain Dev 33:131–149. https://doi.org/10.1007/s13593-011-0075-4

Maystre LY, Pictet J, Simos J (1994) Méthodes multicritères ELECTRE. Presses Polytechniques et Universitaires Romandes, Lausanne

Mitchell RK, Agle BR, Donna JW (1997) Toward a theory of stakeholder identification and salience: defining the principle of who and what really counts. The Academy of Management Review. Vol 22, I 4, pp 853-886

Meynard JM, Dedieu B, Bos AP (2012) Re-design and co-design of farming systems. An overview of methods and practices. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer, Netherlands, Dordrecht, pp 405–429

Moragues-Faus A, Marceau A (2019) Measuring progress in sustainable food cities: an indicators toolbox for action. Sustainability 11:45. https://doi.org/10.3390/su11010045

Motte D, Bjärnemo R, Yannou B (2011) On the interaction between the engineering design and development process models - part I: elaborate Elaborations on the generally accepted process models. Proceedings of ICoRD: 3rd International Conference on Research into Design, January 10-12, Bangalore, India

Nonaka I, Umemoto K, Senoo D (1996) From information processing to knowledge creation: a paradigm shift in business management. Technol Soc 18:202–218

Pastor AV, Vieira DCS, Soudijn FH, Edelenbosch OY (2020) How uncertainties are tackled in multi-disciplinary science? A review of integrated assessments under global change. CATENA 186:104305. https://doi.org/10.1016/j.catena.2019.104305

Pedersen S (2020) Staging negotiation spaces a co-design framework. Des Stud 18:58–81. https://doi.org/10.1016/j.destud.2020.02.002

Pedersen E, Remmen A (2022) Challenges with product environmental footprint: a systematic review. Int J Life Cycle Assess 27:342–352. https://doi.org/10.1007/s11367-022-02022-3

Pelzer E, Fortino G, Bockstaller C et al (2012) Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecol Ind 18:171–182. https://doi.org/10.1016/j.ecolind.2011.11.019

Poudelet V, Chayer J-A, Margni M et al (2012) A process-based approach to operationalize life cycle assessment through the development of an eco-design decision-support system. J Clean Prod 33:192–201. https://doi.org/10.1016/j.jclepro.2012.04.005

Recchia L, Boncinelli P, Cini E et al (2011) Multicriteria analysis and LCA techniques. Springer, London, London

Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process – a framework and guidance. Environ Model Softw 22:1543–1556. https://doi.org/10.1016/j.envsoft.2007.02.004

Riandita A, Bertoluci G, Yannou B (2013) Food innovation – the challenges of collaboration between marketing and R&D. Confere 2013, Biarritz

Royer I (2002) Les procédures décisionnelles et le développement de nouveaux produits. Rev Fr Gest 139:7–25

Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119:314–325. https://doi.org/10.1016/j.ecolecon.2015.09.015

Sadok W, Angevin F, Bergez J-É et al (2008) Ex ante assessment of the sustainability of alternative cropping systems: implications for using multi-criteria decision-aid methods. A Review. Agron Sustain Dev 28:163–174. https://doi.org/10.1051/agro:2007043

Sadok W, Angevin F, Bergez J-E et al (2009) MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron Sustain Dev 29:447–461. https://doi.org/10.1051/agro/2009006

Salembier C, Segrestin B, Berthet E et al (2018) Genealogy of design reasoning in agronomy: lessons for supporting the design of agricultural systems. Agric Syst 164:277–290. https://doi.org/10.1016/j.agsy.2018.05.005

Schader C, Curran M, Heidenreich A et al (2019) Accounting for uncertainty in multi-criteria sustainability assessments at the farm level: improving the robustness of the SMART-Farm Tool. Ecol Ind 106:105503. https://doi.org/10.1016/j.ecolind.2019.105503

Serrault D (2015) Design, agilité et intelligence collective : motifs et conséquences d’une mutation des pratiques. Sci Du Des 2:40–47

Simon HA (1969) The science of the artificial. MIT Press

Siriwongwilaichat P (2001) Technical information capture for food product innovation in Thailand. PhD Thesis Massey University, New Zealand

Tilman D, Clark M (2015) Food, agriculture & the environment: can we feed the world & save the earth? Daedalus 144:8–23. https://doi.org/10.1162/DAED_a_00350

Thonemann N, Schulte A, Maga D (2020) How to conduct prospective life cycle assessment for emerging technologies? A systematic review and methodological guidance. Sustainability 12:1192. https://doi.org/10.3390/su12031192

Triste L, Marchand F, Debruyne L et al (2014) Reflection on the development process of a sustainability assessment tool: learning from a Flemish case. Ecol Soc 19. https://doi.org/10.5751/ES-06789-190347

Vacek J (2006) Structuring the new product development processes. Czech Republic, Pilsen

Valizadeh N, Hayati D (2021) Development and validation of an index to measure agricultural sustainability. J Clean Prod 280:123797. https://doi.org/10.1016/j.jclepro.2020.123797

van der Werf HMG, Knudsen MT, Cederberg C (2020) Towards better representation of organic agriculture in life cycle assessment. Nat Sustain 3:419–425. https://doi.org/10.1038/s41893-020-0489-6

Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. In: van Ittersum MK, van de Geijn SC (eds) Developments in crop science. Elsevier, pp 293–308

Walker WE, Harremoës P, Rotmans J et al (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr Assess 4:5–17. https://doi.org/10.1076/iaij.4.1.5.16466

Wheelwright SC, Clark KB (1992) Revolutionizing product development. The Free Press, New York

Winck D, Jantet A (1995) Mediating and commissioning objects in sociotechnical process of product design: a conceptual approach. In: Maclean D, Saviotti P, Vinck D (Eds.), Designs, networks and strategies, 111-129

Yannou-Le Bris G, Serhan H, Duchaîne S, Ferrandi JM, Trystram G (2020) Ecodesign and ecoinnovation in the food industries. John Wiley & Sons