Susceptible conditions for debarking by deer in subalpine coniferous forests in central Japan

Elsevier BV - Tập 2 - Trang 1-7 - 2015
Hayato Iijima1, Takuo Nagaike1
1Yamanashi Forest Research Institute, Yamanashi, Japan

Tóm tắt

Recently, deer have expanded their distribution to higher altitude ranges including subalpine forests. However, culling deer and construction of deer fence in subalpine forests are difficult because of steep slopes and complex topography. Thus it is necessary to clarify the factors which are associated with debarking by deer for the effective protection of subalpine forests. In this study, we examined which factors are associated with debarking by sika deer (Cervus nippon) in subalpine coniferous forests. We conducted our survey in Minami-Alps National Park, central Japan. We established 24 10 m × 40 m plots and surveyed the occurrence of debarking on saplings >30 cm in height and <3 cm in diameter at breast height (DBH) and on trees >3 cm in DBH, as well as sapling density within each plot. Minimum distances to nearest grassland of plots were calculated (tentatively assuming grassland would attract deer and would cause high debarking pressure in the surrounding subalpine forests). The mean percentage of debarked live saplings was higher than that of live trees. The mean percentage of debarked saplings which had already died was 81.6 %. Debarking of saplings increased with lower elevation, taller sapling size, and marginally increased near grassland. Sapling density was lower in plots with low basal area of conspecific trees near grassland and differed among species. Sapling density marginally decreased with decreasing elevation and increasing stand tree density. Debarking of trees was positively related to small DBH and low elevation, and marginally increased near grassland and differed among species. Our results suggest that tall saplings in subalpine forests of low elevation or near subalpine grassland were susceptible to debarking by deer and monitoring of these areas may permit the early detection of the impacts of deer in subalpine coniferous forests.

Tài liệu tham khảo

Akaike H (1973) Information theory and an extension of the maximum likelihood principle, in 2nd International Symposium on Information Theory. Tsahkadsor, Armenian SSR, pp 267–281 Akashi N, Nakashizuka T (1999) Effects of bark-stripping by sika deer (Cervus nippon) on population dynamics of a mixed forest in Japan. For Ecol Manage 113:75–82 Akashi N, Unno A, Terazawa K (2011) Effects of deer abundance on broad-leaf tree seedling establishment in the understory of Abies sachalinensis plantations. J For Res 16:500–508 Ando M, Yokota H, Shibata E (2003) Bark stripping preference of sika deer, Cervus nippon, in terms of bark chemical contents. For Ecol Manage 177:323–331 Ando M, Yokota H, Shibata E (2004) Why do sika deer, Cervus nippon, debark trees in summer on Mt. Ohdaigahara, central Japan? Mamm Study 29:73–83 Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century. Cambridge University Press, NY. Beguin J, Pothier D, Prévost M (2009) Can the impact of deer browsing on tree regeneration be mitigated by shelterwood cutting and strip clearcutting? For Ecol Manage 257:38–45 Borkowski J, Ukalski K (2012) Bark stripping by red deer in a post-disturbance area: the importance of security cover. For Ecol Manage 263:17–23 Brostrom G, Holmberg H (2011) Generalized linear models with clustered data: fixed and random effects models. Comput Stat Data Anal 55:3123–3134 Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York Fuller RJ, Gill RMA (2001) Ecological impacts of increasing numbers of deer in British woodland. Forestry 74:193–199 Gill RMA, Beardall V (2001) The impact of deer on woodlands: the effects of browsing and seed dispersal on vegetation structure and composition. Forestry 74:209–218 Heuze P, Schnitzlerm A, Klein F (2005) Consequences of increased deer browsing in winter on silver fir and spruce regeneration in the southern Vosges Mountains: implication for forest management. Ann For Sci 62:175–181 Iijima H, Nagaike T, Honda T (2013) Estimation of deer population dynamics by Bayesian state-space model with multiple abundance indices. J Wildl Manage 77:1038–1047 Iijima H, Nagaike T (2015) Appropriate vegetation indices for measuring the impacts of deer on forest ecosystems. Ecol Ind 48:458–463 Izumiyama S, Mochizuki T (2008) Seasonal range use of sika deer, which inhabits the subalpine zone in the southern Japan Alps. Bull Shinshu Univ Alps Field Center 6:25–32 (in Japanese with English summary) Izumiyama S, Mochizuki T, Takii A (2009) GPS tracking of Sika deer which inhabits the sub-alpine zone in the Southern Japan Alps. Bull Shinshu Univ Alps Field Center 7:63–71 (in Japanese with English summary) Jiang Z, Ueda H, Kitahara M, Imaki H (2005) Bark stripping by sika deer on Veitch fir related to stand age, bark nutrition, and season in northern Mount Fuji district, central Japan. J For Res 10:359–365 Kamei T, Takeda K, Koh K, Izumiyama S, Watanabe O, Ohshima K (2010) Seasonal pasture utilization by wild sika deer (Cervus nippon) in a sown grassland. Grass Sci 56:65–70 Kay S (1993) Factors affecting severity of deer browsing damage within coppiced woodlands in the south of England. Biol Cons 63:217–222 Kiffner C, Rößiger E, Trisl O, Schulz R, Rühe F (2008) Probability of recent bark stripping damage by red deer (Cervus elaphus) on Norway spruce (Picea abies) in a low mountain range in Germany: a preliminary analysis. Silva Fennica 42:125–134 Koda R, Fujita N (2011) Is deer herbivory directly proportional to deer population density? Comparison of deer feeding frequencies among six forests with different deer density. For Ecol Manage 262:432–439 Ligot G, Gheysen T, Lehaire F, Hébert J, Licoppe A, Lejeune P, Brostaux Y (2013) Modeling recent bark stripping by red deer (Cervus elaphus) in South Belgium coniferous stands. Ann For Sci 70:309–318 McLaren BE, Mahoney SP, Porter TS, Oosenbrug SM (2000) Spatial and temporal patterns of use by moose of pre-commercially thinned, naturally-regeneration stands of balsam fir in central Newfoundland. For Ecol Manage 133:179–196 Moore NP, Hart JD, Langton SD (1999) Factors influencing browsing by fallow deer Dama dama in young broad-leaved plantations. Biol Cons 87:255–260 Mysterud A, Loe LE, Zimmermann B, Bischof R, Veiberg V, Meisingset E (2011) Partial migration in expanding red deer populations at northern latitudes: A role for density dependence? Oikos 120:1817–1825 Nagaike T, Hayashi A (2003) Bark-stripping by sika deer (Cervus nippon) in Larix kaempferi plantations in central Japan. For Ecol Manage 175:563–572 Nagaike T (2012) Effects of browsing by sika deer (Cervus nippon) on subalpine vegetation at Mt. Kita, central Japan. Ecol Res 27:467–473 Nagaike T, Ohkubo E, Hirose K (2014) Vegetation recovery in response to the exclusion of grazing by sika deer (Cervus nippon) in seminatural grassland on Mt. Kushigata, Japan. ISRN Biodiversity: Article ID 493495 Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T (2009) The Wild Mammals of Japan. Shoukadoh Book Sellers, Kyoto QGIS Development Team (2015) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ Rooney TP (2001) Deer impacts on forest ecosystems: a North American perspective. Forestry 74:201–208 Schütz M, Risch AC, Leuzinger E, Krüsi BO, Achermann G (2003) Impact of herbivory by red deer (Cervus elaphus L.) on patterns and processes in subalpine grasslands in the Swiss National Park. For Ecol Manage 181:177–188 Stewart GH, Burrows LE (1989) The impact of white-tailed deer Odocoileus virginianus on regeneration in the coastal forests of Stewart Island, New Zealand. Biol Cons 49:275–293 Suzuki M, Miyashita T, Kabaya H, Ochiai K, Asada M, Kikvidze Z (2013) Deer herbivory as an important driver of divergence of ground vegetation communities in temperate forests. Oikos 122:104–110 Takatsuki S (1986) Food habits of sika deer on Mt. Goyo, northern Honshu. Ecol Res 1:119–128 Takatsuki S, Gorai T (1994) Effects of sika deer on the regeneration of a Fagus crenata forest on Kinkazan Island, northern Japan. Ecol Res 9:115–120 Takatsuki S (2009) Effects of sika deer on vegetation in Japan: a review. Biol Cons 142:1922–1929 Takeuchi T, Kobayashi T, Nashimoto M (2011) Altitudinal differences in bark stripping by sika deer in the subalpine coniferous forest of Mt. Fuji. For Ecol Manage 261:2089–2095 Winnie JAJ (2012) Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystems. Ecology 93:2600–2614 Yokoyama S, Maeji I, Ueda T, Ando M, Shibata E (2001) Impact of bark stripping by sika deer, Cervus nippon, on subalpine coniferous forests in central Japan. For Ecol Manage 140:93–99