Susceptibility of crystalline alloys to deformational amorphization during torsion under quasi-hydrostatic pressure

Allerton Press - Tập 76 - Trang 1226-1232 - 2012
R. V. Sundeev1, A. M. Glezer1, A. V. Shalimova1, D. L. Djakonov1, G. I. Nosova1
1Bardin Central Research Institute for Ferrous Metallurgy, Moscow, Russia

Tóm tắt

Features of the transition of Ni50Ti30Hf20, Ti50Ni25, Zr50Ni18Ti17Cu15, and Fe78B8.5Si9P4.5 crystalline alloys with different susceptibilities to amorphization upon annealing and in the amorphous state during intense deformation in a Bridgman chamber are considered. The single- and two-phase crystalline states of the chosen alloys are obtained in different annealing modes. It is shown that the amorphizing rate of crystalline alloys differ substantially at the same degree of deformation; i.e., single-phase crystalline alloys based on titanium nickelide and iron amorphize well, while zirconium-based alloy amorphizes weakly in a manner similar to two-phase iron alloy. We believe that the LDA of crystalline alloys and their corresponding crystalline phases is determined by mechanical, thermodynamic, and concentration factors.

Tài liệu tham khảo

Tat’yanin, E.V., Kurdyumov, V.G., and Fedorov, V.B., Fiz. Met. Metalloved., 1986, vol. 62, pp. 133–137. Suzuki, K., Fuzimori, H., and Hasimoto, K., Amorfnye metally (Amorphous Metals), Masumoto, Ts., Ed., Moscow: Metallurgiya, 1987. Filonov, M.R., Anikin, Yu.A., and Levin, Yu.B., Teoreticheskie osnovy proizvodstva amorfnykh i nanokristallicheskikh splavov metodom sverkhbystroi zakalki (Theoretical Foundations of Amorphous and Nanocrystalline Alloys Manufacturing by Means of Ultrahigh-Speed Hardening), Moscow: Izd. MISiS, 2006. Herlach, D., Galenko, P., and Holland-Moritz, D., Metastable Solids from Undercooled Melts, Elsevier, 2007; Moscow-Izhevsk: Izd. Inst. komp’yut. issl., 2010. Inoue, A., in Amorphous and Nanocrystalline Materials: Preparation, Properties and Applications (Advances in Materials Research), Inoue, A. and Hashimoto, K., Eds., Berlin, Heidelberg, New York: Springer-Verlag, 2001, pp. 1–51. Glezer, A.M., Sundeev, R.V., Shalimova, A.V., and Useinov, S.S., Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, no. 8, pp. 58–65. Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, pp. 16–21. Glezer, A.M., Nosova, G.I., Sundeev, R.V., and Shalimova, A.V., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 11, p. 1515. D’yakonova, N.B, Molotilov, B.V., Vlasova, E.N., and Lyasotskii, I.V., Stal’, 2000, no. 7, pp. 65–70. Sagaradze, V.V., Morozov, S.V., Shabashov, V.A., et al., Fiz. Met. Metalloved., 1988, no. 2, pp. 328–338. Nelson, D.R., J. Non-Cryst. Solids, 1984, vol. 61, no. 3, pp. 475–486. Morris, R.S., J. Appl. Phys., 1979, vol. 50, no. 5, pp. 3250–3257. Glezer, A.M., Permyakova, I.E., Gromov, V.E., and Kovalenko, V.V., Mekhanicheskoe povedenie amorfnykh splavov (Mechanical Behavior of Amorphous Alloys), Novokuznetsk: Izd. SibGU, 2006. Shtremel’, M.A., Prochnost’ splavov (Strength of Alloys), Moscow: MISiS, 1997, part 2. Khachin, V.N., Pushin, V.G., and Kondrat’ev, V.V., Nikelid titana. Struktura i svoistva (Titanium Nickelide. Structure and Properties), Moscow: Nauka, 1992. Kareev, S.I., Shelyakov, A.V., and Glezer, A.M., Deform. Razrush. Mater., 2007, no. 7, pp. 22–27. Prokoshkin, S.D., Khmelevskaya, I.Yu., Dobatkin, S.V., et al., Fiz. Met. Metalloved., 2004, vol. 97, no. 6, pp. 84–90. Djakonova, N.P., Sviridova, T.A., Zakharova, E.A., et al., J. Alloys Comp., 2004, vol. 367, pp. 191–198. Metastabil’nye i neravnovesnye splavy (Metastable and Instable Alloys), Efimov, Yu.V., Ed., Moscow: Metallurgiya, 1988. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (High Plastic Deformations and Alloys Destruction), Moscow: Metallurgiya, 1986. Rösner, H., Shelyakov, A.V., Gleser, A.M., and Schlobmacher, P., Mater. Sci. Eng. A, 2001, vol. 307, nos. 1–2, pp. 188–189. Lu, J.P. and Liu, C.T., Acta Mater., 2002, vol. 50, pp. 3501–3512.