Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein

Journal of Invertebrate Pathology - Tập 110 Số 3 - Trang 334-339 - 2012
Maissa Chakroun1, Yolanda Bel, Silvia Caccia, Lobna Abdelkefi-Mesrati, Baltasar Escriche, Juan Ferré
1Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelkefi-Mesrati, 2005, Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid, FEMS Microbiol. Lett., 244, 353, 10.1016/j.femsle.2005.02.007

Abdelkefi-Mesrati, 2009, Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin, Mol. Biotechnol., 43, 15, 10.1007/s12033-009-9178-4

Abdelkefi-Mesrati, 2011, Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis, J. Invertebr. Pathol., 106, 250, 10.1016/j.jip.2010.10.002

Abdelkefi-Mesrati, 2011, Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin, J. Invertebr. Pathol., 107, 198, 10.1016/j.jip.2011.05.014

Ali, 2011, Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3A insecticidal protein expressed in VipCot™ cotton, J. Invertebr. Pathol., 108, 76

Beard, 2008, Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection, Curr. Microbiol., 57, 195, 10.1007/s00284-008-9173-1

Bell, 1976, Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms, Ann. Entomol. Soc. Am., 69, 365, 10.1093/aesa/69.2.365

Bhalla, 2005, Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis, FEMS Microbiol. Lett., 243, 467, 10.1016/j.femsle.2005.01.011

Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. J., 72, 248, 10.1016/0003-2697(76)90527-3

Estruch, 1996, Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, Proc. Natl. Acad. Sci. USA, 93, 5389, 10.1073/pnas.93.11.5389

Fang, 2007, Characterization of chimeric Bacillus thuringiensis Vip3 toxins, Appl. Environ. Microbiol., 73, 956, 10.1128/AEM.02079-06

Ferré, 2002, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol., 47, 501, 10.1146/annurev.ento.47.091201.145234

Ferré, 2008, Insecticidal genetically modified crops and insect resistance management (IRM), 41

Forcada, 1996, Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins, Arch. Insect Biochem. Physiol., 31, 257, 10.1002/(SICI)1520-6327(1996)31:3<257::AID-ARCH2>3.0.CO;2-V

Haider, 1986, Specificity of Bacillus thuringiensis var. colmeri insecticidal δ-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases, Eur. J. Biochem., 156, 531, 10.1111/j.1432-1033.1986.tb09612.x

Hernández-Rodríguez, 2009, Screening and identification of vip genes in Bacillus thuringiensis strains, Appl. Microbiol., 107, 219, 10.1111/j.1365-2672.2009.04199.x

Lee, 2003, The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3Aa differs from that of Cry1Ab delta-endotoxin, Appl. Environ. Microbiol., 69, 4648, 10.1128/AEM.69.8.4648-4657.2003

Lee, 2006, Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts, Biochem. Biophys. Res. Commun., 339, 1043, 10.1016/j.bbrc.2005.11.112

Li, 2004, Comparative analysis of proteinase activities of Bacillus thuringiensis resistant and susceptible Ostrinia nubilalis (Lepidoptera: Crambidae), Insect Biochem. Mol. Biol., 34, 753, 10.1016/j.ibmb.2004.03.010

Liu, 2007, Identification of vip3Atype genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene, Lett. Appl. Microbiol., 45, 432, 10.1111/j.1472-765X.2007.02217.x

Liu, 2011, Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation, J. Invertebr. Pathol., 108, 92, 10.1016/j.jip.2011.07.007

Milne, 2008, Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera), J. Invertebr. Pathol., 99, 166, 10.1016/j.jip.2008.05.002

Oppert, 1994, Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella, Biochem. Biophys. Res. Commun., 198, 940, 10.1006/bbrc.1994.1134

Schnepf, 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 775, 10.1128/MMBR.62.3.775-806.1998

Sena, 2009, Interaction of Bacillus thuringiensis Cry1 and Vip3Aa proteins with Spodoptera frugiperda midgut binding sites, Appl. Environ. Microbiol., 75, 2236, 10.1128/AEM.02342-08

Shi, 2004, Expression of vip1/vip2 genes in Escherichia coli and Bacillus thuringiensis and the analysis of their signal peptides, Appl. Microbiol., 97, 757, 10.1111/j.1365-2672.2004.02365.x

van Frankenhuyzen, K., Nystrom, C., 2002. The Bacillus thuringiensis toxin specificity database. <http://www.glfc.forestry.ca/bacillus/>.

Yu, 1997, The Bacillus thuringiensis vegetative insecticidal protein Vip3Aa lyses midgut epithelium cells of susceptible insects, Appl. Environ. Microbiol., 63, 532, 10.1128/AEM.63.2.532-536.1997

Yu, 2010, Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China, Curr. Microbiol., 62, 752, 10.1007/s00284-010-9782-3