Tỷ lệ sống, quá trình hồi phục và khả năng bơi của cá đèn biển di cư (Petromyzon marinus) được cấy ghép bằng một thiết bị truyền tín hiệu âm thanh siêu nhỏ mới dành cho các loài cá giống như lươn nhỏ
Tóm tắt
Ít được biết đến về giai đoạn chuyển đổi của cá đèn ký sinh, một khoảng thời gian ngắn nhưng quan trọng bao gồm quá trình di cư của cá juvenile từ sông ra hồ hoặc đại dương để bắt đầu ăn ký sinh. Thông tin về giai đoạn sinh sống này có thể có ý nghĩa bảo tồn quan trọng đối với cả những loài cá đèn đang gặp nguy hiểm và các loài cá đèn xâm lấn. Chúng tôi đã nghiên cứu việc giữ lại ký hiệu, tỷ lệ sống, tốc độ hồi phục vết thương và khả năng bơi lội của cá đèn biển mới chuyển đổi (
Tỷ lệ sống trong 61 ngày của các cá thể đã được gán ký hiệu là 71%, nằm trong khoảng được báo cáo trong các nghiên cứu tương tự về cá đèn juvenile. Tuy nhiên, tỷ lệ sống của những động vật gán ký hiệu này thấp hơn đáng kể so với nhóm đối chứng, với không có tác động nào được gán cho các yếu tố như chiều dài, khối lượng, tình trạng hoặc nguồn gốc quần thể (Hồ Great Lakes so với lưu vực Đại Tây Dương). Tử vong ở những con cá gán ký hiệu tập trung chủ yếu vào bốn ngày đầu sau phẫu thuật, cho thấy tổn thương do quá trình phẫu thuật. Thời gian phục hồi từ gây mê kéo dài bất thường có thể đã góp phần vào tỷ lệ tử vong tăng cao. Trong một bài kiểm tra bơi vọt đơn giản, động vật đã gán ký hiệu bơi chậm hơn đáng kể (− 22.5%) so với những con không gán ký hiệu, nhưng không có sự khác biệt đáng kể trong các bài kiểm tra bơi endurance. Điểm hồi phục vết thương tổng hợp vào ngày thứ tư là dự đoán có ý nghĩa về tốc độ bơi vọt tối đa vào ngày thứ hai mươi, và tình trạng vết thương có liên quan đến khối lượng động vật, nhưng không phải chiều dài, vào thời điểm gán ký hiệu.
Các hạn chế về tỷ lệ sống sót và hiệu suất bơi của cá đèn biển juvenile được cấy ghép bằng máy phát ELAT nằm trong các phạm vi hiện tại được báo cáo cho các nghiên cứu theo dõi telemetry với những loài cá nhỏ, khó quan sát. Kết quả của chúng tôi có thể được cải thiện với các kỹ thuật gây mê và phẫu thuật tinh vi hơn. Khả năng theo dõi các chuyển động di cư của những quần thể cá đèn ký sinh gặp nguy hiểm và gây hại sẽ cải thiện khả năng ước lượng tỷ lệ sinh tử, tồn tại và để điều tra các yếu tố môi trường điều chỉnh thời gian và tỷ lệ di chuyển trong các quần thể hoang dã.
Từ khóa
Tài liệu tham khảo
Baer J, Hartmann F, Brinker A. Abiotic triggers for sea and river lamprey spawning migration and juvenile outmigration in the River Rhine Germany. Ecol Freshwater Fish. 2018;27(4):988–98.
Bailey KM, Houde ED. Predation on Eggs and Larvae of Marine Fishes and the Recruitment Problem. In: Blaxter JHS, Southward AJ, editors. Advances in Marine Biology. Cambridge: Academic Press; 1989. p. 1–83.
Baker CF, Reeve K, Baars D, Jellyman D, Franklin P. Efficacy of 12-mm half-duplex passive integrated transponder tags in monitoring fish movements through stationary antenna systems. North Am J Fish Manag. 2017;37(6):1289–98.
Brown RS, Oldenburg EW, Seaburg AG, Cook KV, Skalski JR, Eppard MB, et al. Survival of seaward-migrating PIT and acoustic-tagged juvenile Chinook salmon in the snake and Columbia rivers: an evaluation of length-specific tagging effects. Anim Biotelem. 2013;1(1):1–13.
Burkett DP, Barber JM, Steeves TB, Siefkes MJ. Sea lamprey control 2020–2040: charting a course through dynamic waters. J Great Lakes Res. 2021;2021(47):S809–14.
Cano-Barbacil C, Radinger J, Argudo M, Rubio-Gracia F, Vila-Gispert A, García-Berthou E. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Sci Rep. 2020;10(1):18947.
Christiansen HE, Gee LP, Mesa MG. Anesthesia of juvenile pacific lampreys with MS-222, BENZOAK, AQUI-S 20E, and Aquacalm. North Am J Fish Manag. 2013;33(2):269–76.
Claireaux G, Handelsman C, Standen E, Nelson JA. Thermal and temporal stability of swimming performance in the European Sea Bass. Physiol Biochem Zoology. 2007;80(2):186–96.
Cooke SJ, Graeb BDS, Suski CD, Ostrand KG. Effects of suture material on incision healing, growth and survival of juvenile largemouth bass implanted with miniature radio transmitters: case study of a novice and experienced fish surgeon. J Fish Biol. 2003;62(6):1366–80.
Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, et al. Acoustic telemetry and fisheries management. Ecol Appl. 2017;27(4):1031–49.
Dauble DD, Moursund RA, Bleich MD. Swimming behaviour of juvenile pacific lamprey Lampetra tridentata. Environ Biol Fish. 2006;75(2):167–71.
Dawson HA, Potts DD, Maguffee AC, O’Connor LM. Feasibility of passive integrated transponder technology to study in situ movements of Larval Sea lamprey. J Fish Wildlife Manag. 2015;6(1):71–82.
Dawson HA, Quintella BR, Almeida PR, Treble AJ, Jolley JC. The ecology of larval and metamorphosing lampreys. In: Docker MF, editor. Lampreys: biology, conservation and control: volume 1. Springer: Dordrecht; 2015. p. 75–137.
Deng ZD, Carlson TJ, Li H, Xiao J, Myjak MJ, Lu J, et al. An injectable acoustic transmitter for juvenile salmon. Sci Rep. 2015;5(1):8111.
Deng ZD, Li H, Lu J, Xiao J, Myjak MJ, Martinez JJ, et al. An acoustic micro-transmitter enabling tracking of sensitive aquatic species in riverine and estuarine environments. Cell Rep Phys Sci. 2021;2(5):100411.
Deng, Z.D., Titzler, P.S., Mueller, R.P., Lu, J., Martinez, J.J., Fu, T., Li, H., Cable, J.S., Deters, K.A., Hubbard, J.M., and Colotelo, A.H. Pilot field trial of the juvenile lamprey/eel tag and RME plan to guide future juvenile pacific lamprey acoustic telemetry studies. 2018
Department, N.H Fish and Game. Endangered and Threatened Wildlife of NH | Nongame | New Hampshire Fish and Game Department. https://www.wildlife.state.nh.us/nongame/endangered-list.html. Accessed 17 Mar 2021.
Du Clos KT, Dabiri JO, Costello JH, Colin SP, Morgan JR, Fogerson SM, et al. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers. J Exp Biol. 2019;22:jeb212464.
Evans TM, Wagner CM, Miehls SM, Johnson NS, Haas TF, Dunlop E, et al. Before the first meal: the elusive pre-feeding juvenile stage of the sea lamprey. J Great Lakes Res. 2021;47:580–9.
Fox, J, Sanford Weisberg. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: 2019; Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Fuiman LA, Cowan JH Jr. Behavior and recruitment success in fish larvae: repeatability and covariation of survival skills. Ecology. 2003;84(1):53–67.
Furey NB, Armstrong JB, Beauchamp DA, Hinch SG. Migratory coupling between predators and prey. Nat Ecol Evol. 2018;2(12):1846–53.
Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1(4):274–8.
Goodman DH, Reid SB, Som NA, Poytress WR. The punctuated seaward migration of Pacific lamprey (Entosphenus tridentatus): environmental cues and implications for streamflow management. Can J Fish Aquat Sci. 2015;72(12):1817–28.
Griffioen AB, van Keeken OA, Hamer AL, Winter HV. Passage efficiency and behaviour of sea lampreys (Petromyzon marinus, Linnaeus 1758) at a large marine–freshwater barrier. River Res Appl. 2022;38(5):906–16.
Hansen MJ, Madenjian CP, Slade JW, Steeves TB, Almeida PR, Quintella BR. Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe. Rev Fish Biol Fisheries. 2016;26(3):509–35.
Hanson KC, Barron JM. Evaluation of the effects of marking pacific lamprey ammocoetes with visual implant elastomer, coded wire tags, and passive integrated transponders. Trans Am Fish Soc. 2017;146(4):626–33.
Hondorp DW, Holbrook C, Krueger CC. Effects of acoustic tag implantation on lake sturgeon Acipenser fulvescens: lack of evidence for changes in behavior. Anim Biotelemetry. 2015;3(1):1–3.
Howe EA, Marsden JE, Donovan TM, Lamberson RH. A life cycle approach to modeling sea lamprey population dynamics in the Lake Champlain basin to evaluate alternative control strategies. J Great Lakes Res. 2012;38:101–14.
Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348(6240):1255642.
Johnson NS, Miehls S. Guiding out-migrating Juvenile Sea Lamprey (petromyzon Marinus) with Pulsed Direct Current. River Res Appl. 2014;30(9):1146–56.
Jones LM, Irwin BJ, Hansen GJA, Dawson HA, Treble AJ, Liu W, et al. An Operating Model for the Integrated Pest Management of Great Lakes Sea Lampreys. Open Fish Sci J. 2009;2:59–73.
Jones ML. Toward improved assessment of sea lamprey population dynamics in support of cost-effective sea lamprey management. J Great Lakes Res. 2007;3:35–47.
Kolok AS, Farrell AP. Individual variation in the swimming performance and cardiac performance of Northern Squawfish Ptychocheilus oregonensis. Physiol Zool. 1994;67(3):706–22.
Krueger DM, Rutherford ES, Mason DM. Modeling the influence of parr predation by walleyes and brown trout on the long-term population dynamics of chinook salmon in Lake Michigan: a stage matrix approach. Trans Am Fish Soc. 2013;142(4):1101–13.
Larson JH, Trebitz AS, Steinman AD, Wiley MJ, Mazur MC, Pebbles V, et al. Great Lakes Rivermouth ecosystems: scientific synthesis and management implications. J Great Lakes Res. 2013;39(3):513–24.
Liedtke TL, Lampman RT, Deng ZD, Beals TE, Porter MS, Hansen AC, et al. Movements of juvenile Pacific Lamprey (Entosphenus tridentatus) in the Yakima and Columbia Rivers, Washington, 2018—A pilot study using acoustic telemetry. Reston, VA: U.S. Geological Survey; 2019; p 40. (Open-File Report; vols. 2019–1058). Report No.: 2019–1058.
Maitland PS. Ecology of the River, Brook and Sea Lamprey. Conserving Natura 2000 Rivers Ecology Series No. 5. Peterborough: English Nature; 2003.
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966;50(3):163–70.
Manzon RG, Youson JH, Holmes JA. Lamprey metamorphosis. In: Lampreys: biology, conservation and control. 139–214 M.F. Docker. Fish and Fisheries Series. Springer; 2015.
Marsden JE, Siefkes MJ. Control of Invasive Sea Lamprey in the Great Lakes, Lake Champlain, and Finger Lakes of New York. In: Docker MF, editor. Lampreys: biology, conservation and control: volume 2. Dordrecht: Springer; 2019. p. 411–79.
Mateus C, Rodríguez-Muñoz R, Quintella B, Alves M, Almeida P. Lampreys of the Iberian Peninsula: distribution, population status and conservation. Endanger Species Res. 2012;16:183–98.
McMichael GA, Eppard MB, Carlson TJ, Carter JA, Ebberts BD, Brown RS, et al. The Juvenile Salmon Acoustic telemetry system: a new tool. Fisheries. 2010;35(1):9–22.
Mesa MG, Copeland ES, Christiansen HE, Gregg JL, Roon SR, Hershberger PK. Survival and growth of juvenile Pacific lampreys tagged with passive integrated transponders (PIT) in freshwater and seawater. Trans Am Fish Soc. 2012;141(5):12601268.
Miehls SM, Holbrook CM, Marsden JE. Diel activity of newly metamorphosed juvenile sea lamprey (Petromyzon marinus). PLoS ONE. 2019;14(2):e0211687.
Moser ML, Jackson AD, Lucas MC, Mueller RP. Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophthalmia. Rev Fish Biol Fishe. 2015;25(1):103–16.
Moser ML, Jackson AD, Mueller RP, Maine AN, Davisson M. Effects of passive integrated transponder (PIT) implantation on Pacific lamprey ammocoetes. Anim Biotelemetry. 2017;5(1):1
Mueller RP, Moursund RA, Bleich MD. Tagging Juvenile Pacific lamprey with passive integrated transponders: methodology, short-term mortality, and influence on swimming performance. North Am J Fish Manag. 2006;26(2):361–6.
Mueller R, Liss S, Deng ZD. Implantation of a New Micro Acoustic Tag in Juvenile Pacific Lamprey and American Eel. JoVE. 2019;(145):e59274.
Nelson JA, Gotwalt PS, Reidy SP, Webber DM. Beyond Ucrit: matching swimming performance tests to the physiological ecology of the animal, including a new fish ‘drag strip.’ Comp Biochem Physiol Part A: Mol Integr Physiol. 2002;133(2):289–302.
Nightingale J, Stebbing P, Taylor N, McCabe G, Jones G. The long-term effects and detection ranges of passive integrated transponders in white-clawed crayfish Austropotamobius pallipes. Knowl Manag Aquat Ecosyst. 2018;419:20.
Potter IC, Huggins RJ. Observations on the morphology, behaviour and salinity tolerance of downstream migrating River lampreys (Lampetra fluviatitis). J Zool. 1973;169(3):365–79.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021.
Rechisky EL, Welch DW, Porter AD, Jacobs-Scott MC, Winchell PM. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean. PNAS. 2013;110(17):6883–8.
Ricker WE. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, Bulletin 191, Ottawa, 1975.
Riley WD, Ibbotson AT, Beaumont WRC, Pawson MG, Cook AC, Davison PI. Predation of the juvenile stages of diadromous fish by sea bass (Dicentrarchus labrax) in the tidal reaches of an English chalk stream. Aquat Conserv Mar Freshwat Ecosyst. 2011;21(3):307–12.
Robinson JM, Wilberg MJ, Adams JV, Jones ML. A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics. Can J Fish Aquat Sci. 2013;70(12):1709.
Sabal MC, Boyce MS, Charpentier CL, Furey NB, Luhring TM, Martin HW, et al. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol Evol. 2021;36(8):737–49.
Schreck CB, Fitzpatrick MS, Lerner DT. Determination of passage of juvenile lamprey: Development of tagging protocol. Annual Report, U.S. Army Corps of Engineers BPS-P-00-15b, 1999.
Schultz LD, Heck MP, Kowalski BM, Eagles-Smith CA, Coates K, Dunham JB. Bioenergetics Models to Estimate Numbers of Larval Lampreys Consumed by Smallmouth Bass in Elk Creek, Oregon. North Am J Fish Manag. 2017;37(4):714–23.
Simard LG, Sotola VA, Marsden JE, Miehls S. Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile sea lamprey. Anim Biotelemetry. 2017;5(1):18.
Sogard SM. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci. 1997;60:1129–57.
Summerfelt RC, Smith LS. Anaesthesia, surgery and related techniques. In: Schreck CB, Moyle PB, editors. Methods for fish biology. Bethesda MD: American Fisheries Society; 1990. p. 213–272.
Sutphin ZA, Hueth CD. Swimming performance of Larval Pacific Lamprey (Lampetra tridentata). Northwest Sci. 2010;84(1):196–200.
The IUCN Red List of Threatened Species [Internet]. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en. Accessed Mar 17 2021.
Therneau T, Crowson C. Using time dependent covariates and time dependent coefficients in the cox model. Survival Package. 2013.
Therneau T. A Package for Survival Analysis in R. R package version 2.44–11. 2020.
Johnson B. Study Protocol For A Compassionate Aquaculture Investigational New Animal Drug (INAD) Exemption For AQUI-S®20E (eugenol) (INAD #11-741). 2013. https://www.fws.gov/media/study-protocol-compassionate-aquaculture-investigational-new-animal-drug-inad-exemption-aqui. Accessed 9 July 2022
Wagner GN, Stevens ED, Byrne P. Effects of suture type and patterns on surgical wound healing in rainbow trout. Trans Am Fish Soc. 2000;129(5):1196–205.
Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen C, Killen SS, McKenzie DJ, Metcalfe JD, Peck MA, Vu M, Cooke SJ. Understanding the individual to implement the ecosystem approach to fisheries management. Conserv Physiol. 2016;4(1):cow005. https://doi.org/10.1093/conphys/cow005
Wardle CS. Effects of temperature on the maximum swimming speed of fishes. In: Ali MA, editor. Environmental physiology of fishes. Boston: Springer; 1980. p. 519–31.
Winger PD, He P, Walsh SJ. Factors affecting the swimming endurance and catchability of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci. 2000. https://doi.org/10.1139/f00-049.
Youson JH, Potter IC. A description of the stages in the metamorphosis of the anadromous sea lamprey, Petromyzon marinus L. Can J Zool. 1979;57(9):1808–17.
Zahl IH, Kiessling A, Samuelsen OB, Hansen MK. Anaesthesia of Atlantic cod (Gadus morhua) — Effect of pre-anaesthetic sedation, and importance of body weight, temperature and stress. Aquaculture. 2009;295(1):52–9.