Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Williams P M. Indeterminate probabilities. In: Formal Methods in the Methodology of Empirical Sciences. Wroclaw: Ossolineum & Reidel, 1976, 229–246
Peng S. G-expectation, G-Brownian motion and related stochastic calculus of Itô’s type. In: Stochastic Analysis and Applications, The Abel Symposium 2005, Abel Symposia · 2. New York: Springer-Verlag, 2006, 541–567
Peng S. Law of large numbers and central limit theorem under nonlinear expectations. arXiv:math.PR/07-02358v1 13 Feb 2007
Peng S. G-Brownian motion and dynamic risk measure under volatility uncertainty. arXiv:0711.2834v1 [math.PR] 19 Nov 2007
Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes Appl, 118(12):2223–2253 (2008)
Peng S. A new central limit theorem under sublinear expectations. arXiv:0803.2656v1 [math.PR] 18 Mar 2008
El Karoui N, Peng S, Quenez M C. Backward stochastic differential equation in finance. Math Finance, 7(1): 1–71 (1997)
Chen Z, Epstein L. Ambiguity, risk and asset returns in continuous time. Econometrica, 70(4): 1403–1443 (2002)
Avellaneda M, Levy A, Paras A. Pricing and hedging derivative securities in markets with uncertain volatilities. Appl Math Finance, 2: 73–88 (1995)
Lyons T. Uncertain volatility and the risk free synthesis of derivatives. Appl Math Finance, 2: 117–133 (1995)
Cheridito P, Soner H M, Touzi N, Second order backward stochastic differential equations and fully non-linear parabolic PDEs. arXiv:math.PR/0509295 v1 14 Sep 2005
Krylov N V. Nonlinear Parabolic and Elliptic Equations of the Second Order. Dordrecht: Reidel Publishing Company, 1987 (Original Russian version by Nauka, Moscow, 1985)
Denis L, Martini C. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann Appl Probab, 16(2): 827–852 (2006)
Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes. arXiv:0802.1240v1 [math.PR] 9 Feb, 2008
Hu M. Explicit solutions of G-heat equation with a class of initial conditions by G-Brownian motion. Submitted paper, 2008
Hu M, Peng S. On representation theorem of G-expectations and paths of G-Brownian motion. Acta Math Appl Sinica English Series, 25(3): 1–8 (2009)
Magali K. Etude des Modèles non dominé en Mathématiques Financières, Thèse, Université d’Evry Val d’Esonne, 2008
Lin Q. Some properties of G-expectation, Preprint, 2008
Lin Q. Stochastic differential equations driven by G-Brownian motion. Preprint, 2008
Xu J, Zhang B. Martingale characterization of G-Brownian motion. Stochastic Processes Appl, 119(1): 232–248 (2009)
Liao M. G-Browian motion in Lie groups, Preprint, 2009
Peng S. Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math Appl Sin Engl Ser, 20(2): 1–24 (2004)
Peng S. Nonlinear expectations and nonlinear Markov chains. Chinese Ann Math Ser B, 26(2): 159–184 (2005)
Denis L, Martini C. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann Appl Probab, 16(2): 827–852 (2006)
Yan J A. Lecture Note on Measure Theory (Chinese version). Beijing: Science Press, 1998; 2nd ed, 2005
Lévy P. Calcul dés Probabilités. Paris: Gautier-Villars, 1925
Lévy P. Processus Stochastic et Mouvement Brownian, Jacques Gabay, 2ème éd. Paris: Gautier-Villars, 1965
Wang L. On the regularity of fully nonlinear parabolic equations: II. Comm Pure Appl Math, 45: 141–178 (1992)
Crandall M, Ishii H, Lions P L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc, 27(1): 1–67 (1992)
Peng S. Backward SDE and related g-expectation. In: Backward Stochastic Differential Equations, Pitman Research Notes in Math. Series, No. 364. El Karoui Mazliak ed. Boca Raton: Chapman & Hall/CRC, 1997, 141–159
Coquet F, Hu Y, Memin J, et al. Filtration-consistent nonlinear expectations and related g-expectations. Probab Theory Related Fields, 123: 1–27 (2002)
Peng S. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type. Probab Theory Related Fields, 113(4): 473–499 (1999)
Rosazza Gianin E. Some examples of risk measures via g-expectations. Insurance Math Econom, 39: 19–34 (2006)
Barrieu P, El Karoui N. Pricing, hedging and optimally designing derivatives via minimization of risk measures. To appear in: Volume on Indifference Pricing. Princeton: Princeton University, 2009
Delbaen F, Rosazza Gianin E, Peng S. m-Stable sets, risk measures and g-expectations. Preprint, 2005