Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khảo Sát Mô Hình Kênh và Sự Lan Truyền Sóng Radio cho Hệ Thống MIMO Không Dây
Tóm tắt
Bài báo này cung cấp cái nhìn tổng quan về các mô hình sự lan truyền sóng và kênh tiên tiến nhất cho hệ thống nhiều đầu vào nhiều đầu ra (MIMO) không dây. Chúng tôi phân biệt giữa các mô hình vật lý và các mô hình phân tích, đồng thời thảo luận về các ví dụ phổ biến từ cả hai loại mô hình. Các mô hình vật lý tập trung vào cơ chế lan truyền hai chiều giữa vị trí của máy phát và máy thu mà không xem xét cấu hình anten. Các mô hình phân tích nắm bắt sự lan truyền sóng vật lý và cấu hình anten đồng thời bằng cách mô tả phản hồi xung (tương đương là hàm truyền) giữa các mảng anten ở cả hai đầu liên kết. Chúng tôi cũng xem xét một số mô hình MIMO được đưa vào các hoạt động tiêu chuẩn hóa hiện tại nhằm mục đích đánh giá hệ thống MIMO có thể tái sản xuất và so sánh. Cuối cùng, chúng tôi mô tả một số đặc điểm chính của các kênh và sự lan truyền sóng radio mà chưa được bao gồm đầy đủ trong các mô hình MIMO hiện tại.
Từ khóa
#MIMO #mô hình kênh #sự lan truyền sóng radio #hệ thống không dây #mô hình vật lý #mô hình phân tíchTài liệu tham khảo
Telatar E: Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 1999,10(6):585-595. 10.1002/ett.4460100604
Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311-335. 10.1023/A:1008889222784
http://www.airgonetworks.com
http://www.beceem.com
http://world.belkin.co
http://www.broadcom.co
Molisch AF: Wireless Communications. Wiley-IEEE Press, New York, NY, USA; 2005.
Rappaport T: Wireless Communications, Principles and Practice. Prentice-Hall, Englewood Cliffs, NJ, USA; 1996.
Paulraj A, Nabar R, Gore D: Introduction to Spate-Time Wireless Communications. Cambridge University Press, Cambridge, UK; 2003.
Correia L (Ed): Mobile Broadband Multimedia Networks. John Wiley & Sons, New York, NY, USA; 2006.
http://www.lx.it.pt/cost273
Steinbauer M, Molisch AF, Bonek E: The double-directional radio channel. IEEE Antennas and Propagation Magazine 2001,43(4):51-63. 10.1109/74.951559
Steinbauer M: The radio propagation channel—a non-directional, directional, and double-directional point-of-view, Ph.D. dissertation. Vienna University of Technology, Vienna, Austria
Steinbauer M: A comprehensive transmission and channel model for directional radio channel. in COST 259 TD (98) 027, Bern, Switzerland, February 1998
Steinbauer M, Hampicke D, Sommerkorn G, et al.: Array measurement of the double-directional mobile radio channel. Proceedings of the 51st IEEE Vehicular Technology Conference (VTC '00), May 2000, Tokio, Japan 3: 1656-1662.
Asztély D, Öttersten B, Swindlehurst AL: Generalised array manifold model for wireless communication channels with local scattering. IEE Proceedings - Radar, Sonar and Navigation 1998,145(1):51-57. 10.1049/ip-rsn:19981768
Molisch AF, Asplund H, Heddergott R, Steinbauer M, Zwick T: The COST 259 directional channel model—I: overview and methodology. IEEE Transactions on Wireless Communications 2006,5(12):3421-3433.
Correia LM (Ed): Wireless Flexible Personalised Communications (COST 259 Final Report). John Wiley & Sons, Chichester, UK; 2001.
Özcelik H: Indoor MIMO channel models, Ph.D. dissertation. Institut für Nachrichtentechnik und Hochfrequenztechnik, Vienna University of Technology, Vienna, Austria http://www.nt.tuwien.ac.at/mobile/thesesfinished
Wallace JW, Jensen MA: Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models. Proceedings of the 54th IEEE Vehicular Technology Conference (VTC '01), October 2001, Sidney, Australia 2: 1078-1082.
Wallace JW, Jensen MA: Modeling the indoor MIMO wireless channel. IEEE Transactions on Antennas and Propagation 2002,50(5):591-599. 10.1109/TAP.2002.1011224
Burr A: Capacity bounds and estimates for the finite scatterers MIMO wireless channel. IEEE Journal on Selected Areas in Communications 2003,21(5):812-818. 10.1109/JSAC.2003.810291
Debbah M, Müller RR: MIMO channel modeling and the principle of maximum entropy. IEEE Transactions on Information Theory 2005,51(5):1667-1690. 10.1109/TIT.2005.846388
Sayeed AM: Deconstructing multiantenna fading channels. IEEE Transactions on Signal Processing 2002,50(10):2563-2579. 10.1109/TSP.2002.803324
Chuah C-N, Kahn JM, Tse D: Capacity of multi-antenna array systems in indoor wireless environment. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '98), November 1998, Sidney, Australia 4: 1894-1899.
Chizhik D, Rashid-Farrokhi F, Ling J, Lozano A: Effect of antenna separation on the capacity of BLAST in correlated channels. IEEE Communications Letters 2000,4(11):337-339. 10.1109/4234.892194
Shiu D-S, Foschini GJ, Gans MJ, Kahn JM: Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications 2000,48(3):502-513. 10.1109/26.837052
Kermoal JP, Schumacher L, Pedersen KI, Mogensen PE, Frederiksen F: A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications 2002,20(6):1211-1226. 10.1109/JSAC.2002.801223
Weichselberger W, Herdin M, Özcelik H, Bonek E: A stochastic MIMO channel model with joint correlation of both link ends. IEEE Transactions on Wireless Communications 2006,5(1):90-99.
3GPP - 3GPP2 Spatial Channel Model Ad-hoc Group3GPP TR 25.996 : Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations. v6.1.0 (2003-09
http://www.ist-winner.org/
Erceg V, Hari KVS, Smith MS, et al.: Channel models for fixed wireless applications. Contribution IEEE 802.16.3c-01/29r4, IEEE 802.16 Broadband Wireless Access Working Grou
Erceg V, Schumacher L, Kyritsi P, et al.: TGn channel models. In Tech. Rep. IEEE P802.11. , Geneva, Switzerland; 2004. http://www.802wirelessworld.com/8802
Bello P: Characterization of randomly time-variant linear channels. IEEE Transactions on Communications 1963,11(4):360-393. 10.1109/TCOM.1963.1088793
Vaughan R, Andersen JB: Channels, Propagation and Antennas for Mobile Communications. IEE Press, London, UK; 2003.
Kattenbach R: Considerations about the validity of WSSUS for indoor radio channels. COST 259 TD(97)070, 3rd Management Committee Meeting, September 1997, Lisbon, Portugal
Dossi L, Tartara G, Tallone F: Statistical analysis of measured impulse response functions of 2.0 GHz indoor radio channels. IEEE Journal on Selected Areas in Communications 1996,14(3):405-410. 10.1109/49.490225
Kivinen J, Zhao X, Vainikainen P: Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Transactions on Antennas and Propagation 2001,49(8):1192-1203. 10.1109/8.943314
Tsatsanis MK, Giannakis GB, Zhou G: Estimation and equalization of fading channels with random coefficients. Signal Processing 1996,53(2-3):211-229. 10.1016/0165-1684(96)00087-4
Matz G: On non-WSSUS wireless fading channels. IEEE Transactions on Wireless Communications 2005,4(5):2465-2478.
Biglieri E, Proakis J, Shamai S: Fading channels: information-theoretic and communications aspects. IEEE Transactions on Information Theory 1998,44(6):2619-2692. 10.1109/18.720551
Sayeed AM, Aazhang B: Joint multipath-Doppler diversity in mobile wireless communications. IEEE Transactions on Communications 1999,47(1):123-132. 10.1109/26.747819
Bultitude R, Brussaard G, Herben M, Willink TJ: Radio channel modelling for terrestrial vehicular mobile applications. Proceedings of Millenium Conference on Antennas and Propagation, April 2000, Davos, Switzerland 1-5.
Gehring A, Steinbauer M, Gaspard I, Grigat M: Empirical channel stationarity in urban environments. Proceedings of the 4th European Personal Mobile Communications Conference (EPMCC '01), February 2001, Vienna, Austria
K. Hugl, “Spatial channel characteristics for adaptive antenna downlink transmission,” Ph.D. dissertation, Vienna University of Technology, Vienna, Austria, 2002.
Viering I, Hofstetter H, Utschick W: Validity of spatial covariance matrices over time and frequency. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '02), November 2002, Taipeh, Taiwan 1: 851-855.
M. Herdin, “Non-stationary indoor MIMO radio channels,” Ph.D. dissertation, Vienna University of Technology, Vienna, Austria, 2004.
Balanis C: Advanced Engineering Electromagnetics. John Wiley & Sons, New York, NY, USA; 1999.
Kouyoumjian RG, Pathak PH: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE 1974,62(11):1448-1461.
Leubbers RJ: Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss. IEEE Transactions on Antennas and Propagation 1984,32(1):70-76. 10.1109/TAP.1984.1143189
Bertoni H: Radio Propagation for Modern Wireless Systems. Prentice Hall PTR, Englewood Cliffs, NJ, USA; 2000.
Ling J, Chizhik D, Valenzuela RA: Predicting multi-element receive & transmit array capacity outdoors with ray tracing. Proceedings of the 53rd IEEE Vehicular Technology Conference (VTC '01), May 2001, Rhodes, Greece 1: 392-394.
Cheon C, Liang G, Bertoni HL: Simulating radio channel statistics for different building environments. IEEE Journal on Selected Areas in Communications 2001,19(11):2191-2200. 10.1109/49.963805
Degli-Esposti V, Guiducci D, de'Marsi A, Azzi P, Fuschini F: An advanced field prediction model including diffuse scattering. IEEE Transactions on Antennas and Propagation 2004,52(7):1717-1728. 10.1109/TAP.2004.831299
Lee W: Effect on correlation between two mobile radio base-station antennas. IEEE Transactions on Communications 1973,21(11):1214-1224. 10.1109/TCOM.1973.1091578
Petrus P, Reed JH, Rappaport TS: Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications 2002,50(3):495-502. 10.1109/26.990911
Liberti JC, Rappaport TS: A geometrically based model for line-of-sight multipath radio channels. Proceedings of the 46th IEEE Vehicular Technology Conference (VTC '96), April-May 1996, Atlanta, Ga, USA 2: 844-848.
Blanz JJ, Jung P: A flexibly configurable spatial model for mobile radio channels. IEEE Transactions on Communications 1998,46(3):367-371. 10.1109/26.662642
Norklit O, Andersen JB: Diffuse channel model and experimental results for array antennas in mobile environments. IEEE Transactions on Antennas and Propagation 1998,46(6):834-840. 10.1109/8.686770
Fuhl J, Molisch AF, Bonek E: Unified channel model for mobile radio systems with smart antennas. IEE Proceedings - Radar, Sonar and Navigation 1998,145(1):32-41. special issue on antenna array processing technique 10.1049/ip-rsn:19981750
Oestges C, Erceg V, Paulraj AJ: A physical scattering model for MIMO macrocellular broadband wireless channels. IEEE Journal on Selected Areas in Communications 2003,21(5):721-729. 10.1109/JSAC.2003.810322
Molisch AF, Kuchar A, Laurila J, Hugl K, Schmalenberger R: Geometry-based directional model for mobile radio channels—principles and implementation. European Transactions on Telecommunications 2003,14(4):351-359.
Laurila J, Molisch AF, Bonek E: Influence of the scatterer distribution on power delay profiles and azimuthal power spectra of mobile radio channels. Proceedings of the 5th International Symposium on Spread Spectrum Techniques & Applications (ISSSTA '98), September 1998, Sun City, South Africa 1: 267-271.
Toeltsch M, Laurila J, Kalliola K, Molisch AF, Vainikainen P, Bonek E: Statistical characterization of urban spatial radio channels. IEEE Journal on Selected Areas in Communications 2002,20(3):539-549. 10.1109/49.995513
Suzuki H: A statistical model for urban radio propagation. IEEE Transactions on Communications 1977,25(7):673-680. 10.1109/TCOM.1977.1093888
Kuchar A, Rossi J-P, Bonek E: Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation 2000,48(2):137-146. 10.1109/8.833062
Bergljung C, Karlsson P: Propagation characteristics for indoor broadband radio access networks in the 5 GHz band. Proceedings of the 9th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '98), September 1998, Boston, Mass, USA 2: 612-616.
Molisch AF: A generic model for MIMO wireless propagation channels in macro- and microcells. IEEE Transactions on Signal Processing 2004,52(1):61-71. 10.1109/TSP.2003.820144
Saleh AAM, Valenzuela RA: A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications 1987,5(2):128-137.
Chong C-C, Tan C-M, Laurenson D, McLaughlin S, Beach MA, Nix AR: A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems. IEEE Journal on Selected Areas in Communications 2003,21(2):139-150. 10.1109/JSAC.2002.807347
Spencer QH, Jeffs BD, Jensen MA, Swindlehurst AL: Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications 2000,18(3):347-360. 10.1109/49.840194
Zwick T, Fischer C, Wiesbeck W: A stochastic multipath channel model including path directions for indoor environments. IEEE Journal on Selected Areas in Communications 2002,20(6):1178-1192. 10.1109/JSAC.2002.801218
Soma P, Baum DS, Erceg V, Krishnamoorthy R, Paulraj AJ: Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications. Proceedings of IEEE International Conference on Communications (ICC '02), April-May 2002, New York, NY, USA 1: 272-276.
Weichselberger W: Spatial structure of multiple antenna radio channels, Ph.D. dissertation. Institut für Nachrichtentechnik und Hochfrequenztechnik, Vienna University of Technology, Vienna, Austria http://www.nt.tuwien.ac.at/mobile/thesesfinished
McNamara D, Beach M, Fletcher P, Karlsson P: Initial investigation of multiple-input multiple-output channels in indoor environments. Proceedings of the IEEE Benelux Chapter Symposium on Communications and Vehicular Technology (SCVT '00), October 2000, Leuven, Belgium 139-143.
Bonek E, Özcelik H, Herdin M, Weichselberger W, Wallace J: Deficiencies of the 'Kronecker' MIMO radio channel model. Proceeding of the 6th International Symposium on Wireless Personal Multimedia Communications (WPMC '03), October 2003, Yokosuka, Japan
Jakes W: Microwave Mobile Communications. IEEE Press, New York, NY, USA; 1974.
Foo S, Beach M, Burr A: Wideband outdoor MIMO channel model derived from directional channel measurements at 2 GHz. Proceedings of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC '04), September 2004, Abano Terme, Italy
Liu K, Raghavan V, Sayeed AM: Capacity scaling and spectral efficiency in wide-band correlated MIMO channels. IEEE Transactions on Information Theory 2003,49(10):2504-2526. 10.1109/TIT.2003.817446
Debbah M, Müller R, Hofstetter H, Lehne P: Validation of mutual information complying MIMO models. submitted to IEEE Transactions on Wireless Communications
Debbah M, Müller R: Capacity complying MIMO channel models. Proceedings of the 37th Annual Asilomar Conference on Signals, Systems and Computers (ACSSC '03), November 2003, Pacific Grove, Calif, USA 2: 1815-1819.
Molisch AF, Hofstetter H, et al.: The COST273 channel model. In COST 273 Final Report. Edited by: Correia L. Springer, New York, NY, USA; 2006.
International Telecommunications Union : Guidelines for evaluation of radio transmission technologies for imt-2000. Tech. Rep. ITU-R M.1225 1997.
Baum DS, Hansen J, Del Galdo G, Milojevic M, Salo J, Kyösti P: An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). Proceedings of the 61st IEEE Vehicular Technology Conference (VTC '05), May-June 2005, Stockholm, Sweden 5: 3132-3136.
El-Sallabi H, Baum D, Zetterberg P, Kyösti P, Rautiainen T, Schneider C: Wideband spatial channel model for MIMO systems at 5 GHz in indoor and outdoor environments. Proceedings of the 63rd IEEE Vehicular Technology Conference (VTC '06), May 2006, Melbourne, Australia 6: 2916-2921.
Medbo J, Berg J-E: Measured radio wave propagation characteristics at 5 GHz for typical HIPERLAN/2 scenarios. In Tech. Rep. 3ERI074a. ETSI, Sophia-Antipolis, France; 1998.
Medbo J, Schramm P: Channel models for HIPERLAN/2. In Tech. Rep. 3ERI085B. ETSI, Sophia-Antipolis, France; 1998.
Schumacher L: WLAN MIMO channel matlab program. http://www.info.fundp.ac.be/~lsc/Research/IEEE_80211_HTSG_CMSC/distribution_terms.html
Oestges C, Erceg V, Paulraj A: Propagation modeling of multi-polarized MIMO fixed wireless channels. IEEE Transactions on Vehicular Technology 2004,53(3):644-654. 10.1109/TVT.2004.827149
Gesbert D, Bölcskei H, Gore DA, Paulraj AJ: Outdoor MIMO wireless channels: models and performance prediction. IEEE Transactions on Communications 2002,50(12):1926-1934. 10.1109/TCOMM.2002.806555
Chizhik D, Foschini G, Gans M, Valenzuela R: Keyholes, correlations, and capacities of multielement transmit and receive antennas. IEEE Transactions on Wireless Communications 2002,1(2):361-368. 10.1109/7693.994830
Almers P, Tufvesson F, Molisch AF: Measurement of keyhole effect in a wireless multiple-input multiple-output (MIMO) channel. IEEE Communications Letters 2003,7(8):373-375. 10.1109/LCOMM.2003.815655
Richter A, Schneider C, Landmann M, Thomä R: Parameter estimation results of specular and dense multipath components in micro-cell scenarios. Proceedings of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC '04), September 2004, Abano Terme, Italy