Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khảo sát và nghiên cứu về giám sát thông minh và quản lý sức khỏe cho các công trình xây dựng lớn
Tóm tắt
Với sự phát triển nhanh chóng của hạ tầng dân dụng quy mô lớn, tính bền vững và độ tin cậy của chúng đã trở thành những vấn đề quan trọng nhất liên quan đến trật tự xã hội và đời sống hàng ngày của con người. Trong những năm gần đây, Giám sát Sức khỏe Cấu trúc (SHM) cho kỹ thuật xây dựng đã thu hút nhiều sự quan tâm của các nhà nghiên cứu. Trong khi đó, những tiến bộ mới nhất về hệ thống cyber-physical, robot thông minh, mạng cảm biến không dây và kỹ thuật khai thác dữ liệu đã thúc đẩy sự phát triển của giám sát cấu trúc thông minh và quản lý sức khỏe. Bài báo này trước tiên giới thiệu sự phát triển và phân loại của SHM cho hạ tầng dân dụng. Thứ hai, các tiến bộ nghiên cứu gần đây về các công nghệ hỗ trợ của nó bao gồm cảm biến, robot phát hiện thông minh, mạng cảm biến không dây, phân tích và quản lý dữ liệu được báo cáo. Tiếp theo, một hệ thống giám sát thông minh và quản lý sức khỏe cho hệ thống lợp mái kim loại được trình bày như một ví dụ ứng dụng. Cuối cùng, một số xu hướng tương lai cho SHM được thảo luận.
Từ khóa
#giám sát sức khỏe cấu trúc #công trình dân dụng #công nghệ cảm biến #robot thông minh #mạng cảm biến không dây #khai thác dữ liệuTài liệu tham khảo
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)
Alam Bhuiyan, M.Z., Wu, J., Wang, G., Cao, J.: Sensing and decision making in cyber-physical systems: the case of structural event monitoring. IEEE Trans. Ind. Inform. 12, 2103–2114 (2016)
Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7, 537–568 (2009)
Backes, P.G., Bar-Cohen, Y., Joffe, B.: The multifunction automated crawling system (MACS). In: IEEE International Conference on Robotics and Automation, 1997. Proceedings, 335–340 (1997)
Balaguer, C., Nez, A., Pastor, J.M.: A climbing autonomous robot for inspection applications in 3d complex environments. Robotica 18, 287–297 (2000)
Bandara, R.P., Chan, T.H., Thambiratnam, D.P.: Structural damage detection method using frequency response functions. Struct. Health Monit. 13, 418–429 (2014)
Bao, Y., Li, H., Ou, J.: Emerging data technology in structural health monitoring: compressive sensing technology. J. Civ. Struct. Health Monitor. 4, 77–90 (2014)
Bar-Cohen, Y., Backes, P.: Scanning large aerospace structures using open architecture crawlers. In: National Space and Missile Materials Symposium (NSMMS) (2000)
Betti, M., Facchini, L., Biagini, P.: Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms. Meccanica 50, 875–886 (2015)
Bodenmann, A., Thornton, B., Ura, T., Painumgal, U.V.: Visual mapping of internal pipe walls using sparse features for application on board Autonomous Underwater Vehicles. In: Oceans, 1–8 (2009)
Boonlong, K.: Vibration-based damage detection in beams by cooperative coevolutionary genetic algorithm. Adv. Mech. Eng 2014, 155–171 (2014)
Chen, Z., Zhou, X., Wang, X., Dong, L., Qian, Y.: Deployment of a smart structural health monitoring system for long-span arch bridges: a review and a case study. Sensors (Basel) 17, 586 (2017)
Chew, Z.J., Ruan, T., Zhu, M.: Strain energy harvesting powered wireless sensor node for aircraft structural health monitoring. Procedia Eng. 168, 1717–1720 (2016)
Choi, S., Song, B., Ha, R., Cha, H.: Energy-aware pipeline monitoring system using piezoelectric sensor. IEEE Sens. J. 12, 1695–1702 (2012)
Clements, R.: Advanced sensing, degradation detection, diagnostic and prognostic capabilities for structural health management. Proc. SPIE Int. Soc. Opt. Eng. 8347, 11 (2013)
Contreras, W., Ziavras, S.: Wireless sensor network-based pattern matching technique for the circumvention of environmental and stimuli-related variability in structural health monitoring. IET Wirel. Sens. Syst. 6, 26–33 (2016)
Dantu, K., Rahimi, M., Shah, H., Babel, S.: Robomote: enabling mobility in sensor networks. In: International Symposium on Information Processing in Sensor Networks, 404-409 (2005)
Das, S., Saha, P., Patro, S.K.: Vibration-based damage detection techniques used for health monitoring of structures: a review. J. Civ. Struct. Health Monitor. 6, 477–507 (2016)
Devault, J.E.: Robotic system for underwater inspection of bridge piers. IEEE Instrument. Meas. Mag. 3, 32–37 (2000)
Diez, A., Khoa, N.L.D., Alamdari, M.M., Wang, Y., Chen, F., Runcie, P.: A clustering approach for structural health monitoring on bridges. J. Civ. Struct. Health Monitor. 6, 429–445 (2016)
Duisterwinkel, E.H.A., Talnishnikh, E., Krijnders, D., Wortche, H.J.: Sensor motes for the exploration and monitoring of operational pipelines. IEEE Trans. Instrum. Meas. 67, 655–666 (2018)
Engel, A., Friedmann, A., Koch, M., Rohlfing, J., Siebel, T., Mayer, D., Koch, A.: Hardware-accelerated wireless sensor network for distributed structural health monitoring. Procedia Technol. 15, 737–746 (2014)
Figueiredo, E., Figueiras, J., Park, G., Farrar, C.R., Worden, K.: Influence of the autoregressive model order on damage detection. Comput. Aided Civ. Inf. 26, 225–238 (2011)
Forstner, E., Wenzel, H.: The Application of Data Mining in Bridge Monitoring Projects: Exploiting Time Series Data of Structural Health Monitoring. In: 2011 22nd International Workshop on Database and Expert Systems Applications, Toulouse, 297–301 (2011)
Friedrich, M., Dobie, G., Chan, C.C., Pierce, S.G., Galbraith, W., Marshall, S., Hayward, G.: Miniature mobile sensor platforms for condition monitoring of structures. IEEE Sens. J. 9, 1439–1448 (2009)
Fukuda, Y., Feng, M.Q., Narita, Y., Kaneko, S.I.: Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm. IEEE Sens. J. 13, 4725–4732 (2013)
Gibb, S., Le, T., La, H.M., Schmid, R., Berendsen, T.: A multi-functional inspection robot for civil infrastructure evaluation and maintenance. In: Ieee/rsj International Conference on Intelligent Robots and Systems, 2672–2677 (2017)
Gonzalez, I., Karoumi, R.: BWIM aided damage detection in bridges using machine learning. J. Civil Struct. Health Monitor. 5, 715–725 (2015)
Guo, J., Lee, K.M., Zhu, D., Yi, X., Wang, Y.: Large-deformation analysis and experimental validation of a flexure-based mobile sensor node. IEEE-ASME Trans. Mech. 17, 606–616 (2012)
Hackmann, G., Weijun, G., Guirong, Y., Zhuoxiong, S., Chenyang, L., Dyke, S.: Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Trans. Parall. Distrbut. 25, 63–72 (2014)
Harvey, D.Y., Todd, M.D.: Structural health monitoring feature design by genetic programming. Smart Mater. Struct. 23, 095002 (2014)
Hodge, V.J., O’Keefe, S., Weeks, M., Moulds, A.: Wireless sensor networks for condition monitoring in the railway industry: a survey. IEEE T. Intell. Transp. 16, 1088–1106 (2015)
Hong, H., Yong, X.: Vibration-based damage detection of structures by genetic algorithm. J. Comput. Civil Eng. 16, 222–229 (2002)
Hu, X., Wang, B., Ji, H.: A wireless sensor network-based structural health monitoring system for highway bridges. Comput. Aided Civ. Inf. 28, 193–209 (2013)
Hu, Y., Rieutort-Louis, W.S.A., Sanz-Robinson, J., Huang, L., Glisic, B., Sturm, J.C., Wagner, S., Verma, N.: Large-Scale Sensing System Combining Large-Area Electronics and CMOS ICs for Structural-Health Monitoring. IEEE J. Solid-State Circ. 49, 513–523 (2014)
Huston, D., Esser, B., Miller, J., Wang, X.: Robotic and Mobile Sensor Systems for Structural Health Monitoring (2014)
Kamegawa, T., Baba, T., Gofuku, A.: V-shift control for snake robot moving the inside of a pipe with helical rolling motion. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, 1–6 (2011)
Kane, M.B., Peckens, C., Lynch, J.P.: Design and selection of wireless structural monitoring systems for civil infrastructures. In: Sensor Technologies for Civil Infrastructures (2014)
Kim, J.T.: vibration-based damage detection in beams using genetic algorithm. Smart Struct. Syst. 3, 263–280 (2007)
Kosorus, H., Honigl, J., Kung, J.: Using R, WEKA and RapidMiner in Time Series Analysis of Sensor Data for Structural Health Monitoring. In: International Workshop on Database and Expert Systems Applications, 306–310 (2012)
Krishnamurthy, T., Hochhalter, J., Gallegos, A.: Damage characterization method for structural health management using reduced number of sensor inputs. In: Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics and Materials Conference Aiaa/asme/ahs Adaptive Structures Conference Aiaa, (2012)
Kullaa, J.: Structural health monitoring under nonlinear environmental or operational influences. Shock Vib. 2014, 1–9 (2014)
Kundu, T., Khazaeli, S., Ravandi, A.G., Banerji, S., Bagchi, A.: The application of data mining and cloud computing techniques in data-driven models for structural health monitoring. SPIE 9805, 98052 (2016)
Kundu, T., Mueller, I., Das, S., Roy, S., Janapati, V., Vonnieda, K., Zhang, D., Chang, F.-K.: An integrated health management system for real-time impact monitoring and prediction of impact-induced damage on composite structures. SPIE 7650, 76501 (2010)
La, H.M., Lim, R.S., Basily, B.B., Gucunski, N., Yi, J., Maher, A., Romero, F.A., Parvardeh, H.: Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation. IEEE-ASME Trans. Mech. 18, 1655–1664 (2013)
Li, C., Chen, W., Liu, G., Yan, R., Xu, H., Qi, Y.: A noncontact FMCW radar sensor for displacement measurement in structural health monitoring. Sensors (Basel) 15, 7412–7433 (2015a)
Li, J., Deng, J., Xie, W.: Damage detection with streamlined structural health monitoring data. Sensors (Basel) 15, 8832–8851 (2015b)
Li, X., Yu, W., Villegas, S.: Structural health monitoring of building structures with online data mining methods. IEEE Syst. J. 10, 1291–1300 (2016)
Li, X., Zhang, W.: Design of Prognostic and Health Management Structure for UAV System. In: 2011 21st International Conference on Systems Engineering, 12–16 (2011)
Li, Y., Wang, Y., Chase, J.G., Mattila, J., Myung, H., Sawodny, O.: Survey and introduction to the focused section on mechatronics for sustainable and resilient civil infrastructure. IEEE-ASME Trans. Mech. 18, 1637–1646 (2013)
Lins, R.G., Givigi, S.N.: Autonomous robot system architecture for automation of structural health monitoring. In: Systems Conference, 1–7 (2016)
Liu, X., Tong, X., Ding, K., Zhao, X., Zhu, L., Zhang, X.: Measurement of long-term periodic and dynamic deflection of the long-span railway bridge using microwave interferometry. IEEE J. Sel. Top. Appl. 8, 4531–4538 (2015)
Loupos, K., Doulamis, A.D., Stentoumis, C., Protopapadakis, E., Makantasis, K., Doulamis, N.D., Amditis, A., Chrobocinski, P., Victores, J., Montero, R., Menendez, E., Balaguer, C., Lopez, R., Cantero, M., Navarro, R., Roncaglia, A., Belsito, L., Camarinopoulos, S., Komodakis, N., Singh, P.: Autonomous robotic system for tunnel structural inspection and assessment. Int. J. Intell. Robot. Appl. 47, 777–780 (2017)
Luk, B.L., White, T.S., Cooke, D.S., Hazel, G., Chen, S., Centre, B., Pb, G.G.: Climbing service robot for duct inspection and maintenance applications in a nuclear reactor. J. Algebra 107, 63–74 (2001)
Luo, M., Lin, S., Feng, D., He, Z., Chen, L.: Design of the prognostics and health management platform of high-speed railway traction power supply equipment. In: Prognostics and System Health Management Conference, (2017)
Lynch, J.P., Alampalli, S., Alampalli, S., Ettouney, M.: Big data and high-performance analytics in structural health monitoring for bridge management. SPIE 9803, 980315 (2016)
Lynch, J.P., Wang, Y., Loh, K.J., Yi, J.H., Yun, C.B.: Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors. Smart Mater. Struct. 15, 49–55 (2006)
Mascarenas, D., Flynn, E., Farrar, C., Park, G., Todd, M.: A mobile host approach for wireless powering and interrogation of structural health monitoring sensor networks. IEEE Sens. J. 9, 1719–1726 (2009)
Miranda-Vega, J.E., Flores-Fuentes, W., Sergiyenko, O., Rivas-López, M., Lindner, L., Rodríguez-Quiñonez, J.C., Hernández-Balbuena, D.: Optical cyber-physical system embedded on an FPGA for 3D measurement in structural health monitoring tasks. Microprocess. Microsy. 56, 121–133 (2018)
Moradipour, P., Chan, T.H.T., Gallag, C.: An improved modal strain energy method for structural damage detection, 2D simulation. Struct. Eng. Mech. 54, 105–119 (2015)
Moreu, F., Ayorinde, E., Mason, J., Farrar, C., Mascarenas, D.: Remote railroad bridge structural tap testing using aerial robots. Int. J. Intell. Robot. Appl. 2, 67–80 (2017)
Mori, M., Hirose, S.: Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. In: Ieee/rsj International Conference on Intelligent Robots and Systems, 821, 829-834 (2002)
Myung, H., Jeon, H., Bang, Y.S., Wang, Y.: Robotic sensing for assessing and monitoring civil infrastructures. Sens. Technol. Civil Infrastruct. 56, 410–445 (2014)
Myung, H., Lee, S., Lee, B.: Paired structured light for structural health monitoring robot system. Struct. Health Monit. 9, 49–64 (2010)
Neves, A.C., González, I., Leander, J., Karoumi, R.: Structural health monitoring of bridges: a model-free ANN-based approach to damage detection. J. Civil Struct. Health Monitor. 7, 689–702 (2017)
Nagata, S., Sekiguchi, M., Asakawa, K.: Mobile robot control by a structured hierarchical neural network. IEEE Contr. Syst. Mag. 10, 69–76 (1990)
Noel, A.B., Abdaoui, A., Elfouly, T., Ahmed, M.H., Badawy, A., Shehata, M.S.: Structural health monitoring using wireless sensor networks: a comprehensive survey. IEEE Commun. Surv. Tuttor. 19, 1403–1423 (2017)
Prasanna, P., Dana, K.J., Gucunski, N., Basily, B.B., La, H.M., Lim, R.S., Parvardeh, H.: Automated Crack Detection on Concrete Bridges. IEEE T. Autom. Sci. Eng. 13, 591–599 (2016)
Rainieri, C., Fabbrocino, G., Cosenza, E.: Integrated seismic early warning and structural health monitoring of critical civil infrastructures in seismically prone areas. Struct. Health Monit. 10, 291–308 (2010)
Rao, R.M., Lakshmi, A.K.: Damage diagnostic technique combining POD with time-frequency analysis and dynamic quantum PSO. Meccanica 50, 1551–1578 (2015)
Rault, T., Bouabdallah, A., Challal, Y.: Energy efficiency in wireless sensor networks: a top-down survey. Comput. Netw. 67, 104–122 (2014)
Shin, J.U., Kim, D., Kim, J.H., Myung, H.: Micro aerial vehicle type wall-climbing robot mechanism. In: 2013 IEEE RO-MAN: The 22nd IEEE International Symposium on Robot and Human Interactive Communication, 8692, 86921B (2013)
Small, N., Lee, K., Mann, G.: An assigned responsibility system for robotic teleoperation control. Int. J. Intell. Robot. Appl. 2, 81–97 (2018)
Toivola, J., Hollmén, J.: Feature Extraction and Selection from Vibration Measurements for Structural Health Monitoring. In: International Symposium on Intelligent Data Analysis, 213–224 (2009)
Tomizuka, M., Spencer, J.B.F., Nagayama, T., Rice, J.A.: Decentralized structural health monitoring using smart sensors. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, (2008)
Udd, E., Sazonov, E., Inaudi, D., Janoyan, K., Jha, R.: Wireless intelligent sensor network for autonomous structural health monitoring. In: Proceedings of SPIE—the international society for optical engineering, 5384, 305 (2004)
Voltz, L., Cardoso, E.L., Medeiros, R.D.: Damage detection on aluminum beams using vibration-based method and Artificial Neural Networks. In: Abcm International Congress of Mechanical Engineering—Cobem (2017)
Wang, W., Joshi, A., Tirpankar, N., Erickson, P., Cline, M., Thangaraj, P., Henderson, T.C.: Bayesian computational sensor networks: small-scale structural health monitoring. Procedia Comput Sci 51, 2603–2612 (2015)
Wang, Y., Lynch, J., Law, K.: A wireless structural health monitoring system with multithreaded sensing devices: design and validation. Struct. Infrastruct. Eng. 3, 103–120 (2007)
Weihua, S., Hongjun, C., Ning, X.: Navigating a miniature crawler robot for engineered structure inspection. IEEE Trans. Autom. Sci. Eng. 5, 368–373 (2008)
Xiao, J., Xiao, J., Xi, N., Tummala, R.L., Mukherjee, R.: Fuzzy controller for wall-climbing microrobots. IEEE Trans. Fuzzy Syst. 12, 466–480 (2004)
Xiaodan, F.: Design and implementation of remote health monitoring system for 3D visual bridge. Procedia Eng 174, 1330–1335 (2017)
Yu, L., Lin, J.C.: Cloud computing-based time series analysis for structural damage detection. J. Eng. Mech. ASCE 143, 4015002 (2015)
Zhang, T., Wang, D., Cao, J., Ni, Y.Q., Chen, L.-J., Chen, D.: Elevator-assisted sensor data collection for structural health monitoring. IEEE Trans. Mobile Comput. 11, 1555–1568 (2012)
Zhao, Z., Chen, C.: Concrete bridge deterioration diagnosis using fuzzy inference system. Adv. Eng. Softw. 32, 317–325 (2001)
Zheng, W., Zhu, Y.: A bio-inspired memory model for structural health monitoring. Meas. Sci. Technol. 20, 045704 (2009)
Zhou, Q., Zhou, H., Zhou, Q., Yang, F., Luo, L., Li, T.: Structural damage detection based on posteriori probability support vector machine and Dempster-Shafer evidence theory. Appl. Soft Comput. 36, 368–374 (2015)
Zhu, D., Yi, X., Wang, Y., Lee, K.M., Guo, J.: A mobile sensing system for structural health monitoring: design and validation. Smart Mater. Struct. 19, 241–247 (2010)
