Surveillance and distribution of the emergent Sri Lankan cassava mosaic virus in China

Phytopathology Research - Tập 2 - Trang 1-9 - 2020
Duan Wang1,2, Guixiu Huang3, Tao Shi3, Guofen Wang3, Rongxiang Fang1,2, Xuan Zhang1, Jian Ye1,2
1State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
2CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
3Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China

Tóm tắt

Cassava (Manihot esculenta Crantz) is a major staple food crop for more than a billion people in the world. Cassava mosaic virus (CMV), belonging to the Geminiviridae family, is a primary threat to cassava production. Sri Lankan cassava mosaic virus (SLCMV) is the only emergent CMV prevalent in South Asia and Southeast Asia since its identification in 2002. We reported the identification of two invasive strains of SLCMV, Col and HN7, in China in 2018. However, the occurrence and distribution of these known SLCMV strains and the presence of unknown geminivirus in China are still elusive. In this study, we firstly reported an improved CMV detection system based on molecular and serological methods, which was further used to determine the distribution of CMV in major cassava plantations in China. Two optimized PCR primer pairs based on the conserved regions of AV1 and AC1 genes were designed to detect different CMV species and distinguish SLCMV simultaneously. For a serological method, a polyclonal antibody against SLCMV AV1-encoded capsid protein was raised and used for enzyme-linked immunosorbent assay (ELISA). Consistent detection results were achieved by PCR- and ELISA-based methods. Among 62 examined samples collected in 2018, 10 were SLCMV positive, with 4 coinfection cases of two strains (HN7 and Col) in the same cassava plant. Two primer pairs could also be used to detect the presence of CMV in whitefly (Bemisia tabaci) sensitively. All positive samples were from Fujian and Hainan Provinces, indicating a limited distribution of SLCMV in cassava plants in China. Our detection methods could be used for future surveillance system to control and manage cassava mosaic disease in China and other countries.

Tài liệu tham khảo

Alabi OJ, Kumar PL, Naidu RA. Multiplex PCR for the detection of African cassava mosaic virus and East african cassava mosaic Cameroon virus in cassava. J Virol Methods. 2008;154:111–20. Aloyce RC, Tairo F, Sseruwagi P, Rey MEC, Ndunguru J. A single-tube duplex and multiplex PCR for simultaneous detection of four cassava mosaic begomovirus species in cassava plants. J Virol Methods. 2013;189:148–56. Appiah AS, Amoatey HM, Klu GYP, Afful NT, Azu E, Owusu GK. Spread of African cassava mosaic virus from cassava (Manihot esculenta Crantz) to physic nut (Jatropha curcas L.) in Ghana. J Phytopathol. 2012;4:31–7. Azzam O, Frazer J, de la Rosa D, Beaver JS, Ahlquist P, Maxwell DP. Whitefly transmission and efficient ssDNA accumulation of bean golden mosaic geminivirus require functional coat protein. Virology. 1994;204:289–96. Bulubulu OF, Diamuini NA, Kikakedimau NR, Mbaya NA, Mutambel H, Lumande K, et al. PCR and ELISA detection of cassava mosaic virus in a Congolese cassava landrace. Int J Biotechnol Food Sci. 2015;3:10–6. Chetty CC, Rossin CB, Gruissem W, Vanderschuren H, Rey MEC. Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. New Biotechnol. 2013;30:136–43. Chi Y, Pan L-L, Bouvaine S, Fan Y-Y, Liu Y-Q, Liu S-S, et al. Differential transmission of Sri Lankan cassava mosaic virus by three cryptic species of the whitefly Bemisia tabaci complex. Virology. 2020;540:141–9. Colvin J, Omongo CA, Govindappa MR, Stevenson PC, Maruthi MN, Gibson G, et al. Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Adv Virus Res. 2006;67:419–52. Duraisamy R, Natesan S, Muthurajan R, Gandhi K, Lakshmanan P, Karuppusamy N, et al. Molecular studies on the transmission of Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) in cassava by Bemisia tabaci and cloning of ICMV and ICMV replicase gene from cassava. Mol Biotechnol. 2012;53:150–8. Fauquet C, Fargette D. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. 1990;74:404–11. Fondong VN. Geminivirus protein structure and function. Mol Plant Pathol. 2013;14:635–49. Gao S, Qu J, Chua N-H, Ye J. A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas. Arch Virol. 2010;155:607–12. Givord L, Fargette D, Kounounguissa B, Thouvenel JC, Walter B, Regenmortel MV. Detection of geminiviruses from tropical countries by a double monoclonal antibody ELISA using antibodies to African cassava mosaic virus. Agronomie. 1994;14:327–33. Hema M, Kirthi N, Sreenivasulu P, Savithri HS. Development of recombinant coat protein antibody based IC-RT-PCR for detection and discrimination of sugarcane streak mosaic virus isolates from southern India. Arch Virol. 2003;148:1185–93. Höfer P, Bedford ID, Markham PG, Jeske H, Frischmuth T. Coat protein gene replacement results in whitefly transmission of an insect nontransmissible geminivirus isolate. Virology. 1997;236:288–95. Hohnle M, Höfer P, Bedford ID, Briddon RW, Markham PG, Frischmuth T. Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible abutilon mosaic virus isolate. Virology. 2001;290:164–71. Legg JP, Kumar PL, Makeshkumar T, Tripathi L, Ferguson M, Kanju E, et al. Cassava virus diseases: biology, epidemiology, and management. Adv Virus Res. 2015;91:85–142. Leke WN, Kvarnheden A. Mixed infection by two West African tomato-infecting begomoviruses and ageratum leaf curl Cameroon betasatellite in tomato in Cameroon. Arch Virol. 2014;159:3145–8. Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, et al. Virulence factors of geminivirus interact with myc2 to subvert plant resistance and promote vector performance. Plant Cell. 2014;26:4991–5008. Luan J-B, Wang X-W, Colvin J, Liu S-S. Plant-mediated whitefly-begomovirus interactions: research progress and future prospects. Bull Entomol Res. 2014;104:267–76. Minato N, Sok S, Chen S, Delaquis E, Phirun I, Le VX, et al. Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One. 2019;14:e0212780. Mulenga RM, Legg JP, Ndunguru J, Miano DW, Mutitu EW, Chikoti PC, et al. Survey, molecular detection, and characterization of geminiviruses associated with cassava mosaic disease in Zambia. Plant Dis. 2016;100:1379–87. Otim-Nape GW, Thresh JM, Shaw MW. The effects of cassava mosaic virus disease on yield and compensation in mixed stands of healthy and infected cassava. Ann Appl Biol. 1997;130:503–21. Otti G, Bouvaine S, Kimata B, Mkamillo G, Kumar PL, Tomlins K, et al. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants. J Appl Microbiol. 2016;120:1346–56. Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virus Disease. 2019;30:66–73. Sarker MNI, Hossin MA, Yin X, Sarkar MK. One belt one road initiative of China: implication for future of global development. Mod Econ. 2018;9:623–38. Saunders K, Salim N, Mali VR, Malathi VG, Briddon R, Markham PG, et al. Characterisation of Sri lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology. 2002;293:63–74. Seif AA. Effect of cassava mosaic virus on yield of cassava. Plant Dis. 1982;66:661–2. Stewart C, Kon T, Rojas M, Graham A, Martin D, Gilbertson R, et al. Mixed infection of Sida jamaicensis in Jamaica reveals the presence of three recombinant begomovirus DNA a components. Arch Virol. 2014;159:2509–12. Susi H, Barrès B, Vale PF, Laine A-L. Co-infection alters population dynamics of infectious disease. Nat Commun. 2015;6:5975. Uke A, Hoat TX, Quan MV, Liem NV, Ugaki M, Natsuaki KT. First report of Sri Lankan cassava mosaic virus infecting cassava in Vietnam. Plant Dis. 2018;102:2669. Uke A, Khin S, Kitaura K, Ugaki M, Natsuaki KT. Combination of an image-posting system and molecular diagnosis for detecting Sri Lankan cassava mosaic virus. Trop Plant Pathol. 2019;44:238–43. Wang D, Yao XM, Huang GX, Shi T, Wang GF, Ye J. First report of Sri Lankan cassava mosaic virus infected cassava in China. Plant Dis. 2019a;103:1437. Wang D, Zhang X, Yao X, Zhang P, Fang R, Ye J. A 7-amino-acid motif of rep protein essential for virulence is critical for triggering host defense against Sri Lankan cassava mosaic virus. Mol Plant-Microbe Interact. 2020;33:78–86. Wang G, Sun YW, Xu RR, Qu J, Tee CS, Jiang XY, et al. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana. Virus Genes. 2014;48:402–5. Wang HL, Cui XY, Wang XW, Liu SS, Zhang ZH, Zhou XP. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. 2016;100:1029. Wang N, Zhao P, Ma Y, Yao X, Sun Y, Huang X, et al. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance. Philos Trans R Soc B. 2019b;374:20180313. Ye J, Yang J, Sun Y, Zhao P, Gao S, Jung C, et al. Geminivirus activates asymmetric leaves 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens rna silencing in Arabidopsis. PLoS Pathog. 2015;11:e1005196. Zhang M, Chen R, Zhou X, Wu J. Monoclonal antibody-based serological detection methods for wheat dwarf virus. Virol Sin. 2018;33:173–80. Zhao P, Yao X, Cai C, Li R, Du J, Sun Y, et al. Viruses mobilize plant immunity to deter nonvector insect herbivores. Sci Adv. 2019;5:eaav9801.