Surgery formulae for the Seiberg–Witten invariant of plumbed 3-manifolds

Revista Matemática Complutense - Tập 33 - Trang 197-230 - 2019
Tamás László1,2, János Nagy3, András Némethi1,4,2
1BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
2Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
3Department of Mathematics, Central European University, Budapest, Hungary
4Department of Geometry, ELTE - University of Budapest, Budapest, Hungary

Tóm tắt

Assume that $$M({{\mathcal {T}}})$$ is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph $$\mathcal {T}$$. We consider the combinatorial multivariable Poincaré series associated with $$\mathcal {T}$$ and its counting functions, which encode rich topological information. Using the ‘periodic constant’ of the series (with reduced variables associated with an arbitrary subset $${{\mathcal {I}}}$$ of the set of vertices) we prove surgery formulae for the normalized Seiberg–Witten invariants: the periodic constant associated with $${{\mathcal {I}}}$$ appears as the difference of the Seiberg–Witten invariants of $$M({{\mathcal {T}}})$$ and $$M({{\mathcal {T}}}{\setminus }{{\mathcal {I}}})$$ for any $${{\mathcal {I}}}$$.

Tài liệu tham khảo

A’Campo, N.: La fonction zêta d’une monodromie. Comment. Math. Helv. 50, 233–248 (1975) Artin, M.: Some numerical criteria for contractibility of curves on algebraic surfaces. Am. J. Math. 84, 485–496 (1962) Artin, M.: On isolated rational singularities of surfaces. Am. J. Math. 88, 129–136 (1966) Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, A Series of Modern Surveys in Mathematics, Springer (1984) Braun, G., Némethi, A.: Surgery formula for Seiberg–Witten invariants of negative definite plumbed 3–manifolds. J. für die reine und ang. Math 638, 189–208 (2010) Campillo, A., Delgado, F., Gusein-Zade, S.M.: Poincaré series of a rational surface singularity. Invent. Math. 155(1), 41–53 (2004) Campillo, A., Delgado, F., Gusein-Zade, S.M.: Universal abelian covers of rational surface singularities and multi-index filtrations. Funk. Anal. i Prilozhen. 42(2), 3–10 (2008) Cutkosky, S.D., Herzog, J., Reguera, A.: Poincaré series of resolutions of surface singularities. Trans AMS 356(5), 1833–1874 (2003) Eisenbud, D., Neumann, W.: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Princeton University Press, Princeton (1985) Gompf, R.E., Stipsicz, A.: An introduction to \(4\)–Manifolds and Kirby Calculus. Graduate Studies in Mathematics. American Mathematical Society, Providence (1999) Greene, J.E.: A surgery triangle for lattice cohomology. Algebraic Geom. Topol. 13, 441–451 (2013) Laufer, H.B.: The multiplicity of isolated two-dimensional hypersurface singularities. Trans. Am. Math. Soc. 302(2), 489–496 (1987) László, T.: Lattice cohomology and Seiberg–Witten invariants of normal surface singularities. PhD. Thesis. Central European University, Budapest (2013) László, T., Némethi, A.: Ehrhart theory of polytopes and Seiberg-Witten invariants of plumbed 3-manifolds. Geom. Topol. 18(2), 717–778 (2014) László, T., Némethi, A.: Reduction theorem for lattice cohomology. Int. Math. Res. Not. 11, 2938–2985 (2015) László, T., Szilágyi, Zs.: On Poincaré series associated with links of normal surface singularities. Trans. AMS. https://doi.org/10.1090/tran/7802 (2019) Lim, Y.: Seiberg-Witten invariants for 3-manifolds in the case \(b_1=0\) or \(1\). Pac. J. Math. 195(1), 179–204 (2000) Lipman, J.: Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math. 36, 195–279 (1969) Lescop, C.: Global Surgery Formula for the Casson–Walker Invariant. Annals of Mathematics Studies. Princeton University Press, Princeton (1996) Némethi, A.: Five lectures on normal surface singularities. Lectures at the Summer School in Low Dimensional Topology Budapest, Hungary, 1998; Bolyai Society Math. Studies , vol. 8, pp. 269–351 (1999) Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds. Geom Topol 9, 991–1042 (2005) Némethi, A.: Graded Roots and Singularities. Singularities in Geometry and Topology, pp. 394–463. World Sci. Publ, Hackensack (2007) Némethi, A.: Poincaré Series Associated with Surface Singularities. Singularities I, pp. 271–297. American Mathematical Society, Providence (2008) Némethi, A.: Lattice Cohomology of Normal Surface Singularities, vol. 44, pp. 507–543. Publ. of RIMS, Kyoto University, Kyoto (2008) Némethi, A.: The Seiberg-Witten invariants of negative definite plumbed 3-manifolds. J. Eur. Math. Soc. 13, 959–974 (2011) Némethi, A.: Two exact sequences for lattice cohomology. In: Proceedings of the Conference Organized to Honor H. Moscovici’s 65th Birthday, Contemporary Math. vol. 546, pp. 249–269 (2011) Némethi, A.: The cohomology of line bundles of splice-quotient singularities. Adv. Math. 229(4), 2503–2524 (2012) Némethi, A., Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities. Geom. Topol. 6, 269–328 (2002) Némethi, A., Okuma, T.: On the Casson invariant conjecture of Neumann-Wahl. J. Algebraic Geom. 18, 135–149 (2009) Némethi, A., Román, F.: The lattice cohomology of \(S^3_{-d}(K)\). In: Proceedings of the ‘Recent Trends on Zeta Functions in Algebra and Geometry’, 2010 Mallorca, Spain, Contemporary Math. , vol. 566, pp. 261–292 (2012) Neumann, W., Wahl, J.: Complete intersection singularities of splice type as universal abelian covers. Geom. Topol. 9, 699–755 (2005) Nicolaescu, L.: Seiberg-Witten invariants of rational homology \(3\)-spheres. Comm. Contemp. Math. 6(6), 833–866 (2004) Okuma, T.: Universal abelian covers of rational surface singularities. J. Lond. Math. Soc. 70(2), 307–324 (2004) Okuma, T.: The geometric genus of splice-quotient singularities. Trans. Am. Math. Soc. 360(12), 6643–6659 (2008) Ozsváth, P.S., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. Math. 159(3), 1159–1245 (2004) Pichon, A.: Fibrations sur le cercle et surfaces complexes. Ann. Inst. Fourier (Grenoble) 51, 337–374 (2001) Popescu-Pampu, P.: Numerically Gorenstein surface singularities are homeomorphic to Gorenstein ones. Duke Math. J. 159(3), 539–559 (2011) Szenes, A., Vergne, M.: Residue formulae for vector partitions and Euler-Maclaurin sums. Adv. Appl. Math. 30, 295–342 (2003) Turaev, V.: Surgery formula for torsions and Seiberg-Witten invariants of 3-manifolds. arXiv:math/0101108 [math.GT] (2001)