Surfaces in $$\mathbb {R}^7$$ obtained from harmonic maps in $$S^6$$ .

Geometriae Dedicata - Tập 194 - Trang 65-80 - 2017
Pedro Morais1, Rui Pacheco1
1Centro Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Covilhã, Portugal

Tóm tắt

We will investigate the local geometry of the surfaces in the 7-dimensional Euclidean space associated to harmonic maps from a Riemann surface $$\varSigma $$ into $$S^6$$ . By applying methods based on the use of harmonic sequences, we will characterize the conformal harmonic immersions $$\varphi :\varSigma \rightarrow S^6$$ whose associated immersions $$F:\varSigma \rightarrow \mathbb {R}^7$$ belong to certain remarkable classes of surfaces, namely: minimal surfaces in hyperspheres; surfaces with parallel mean curvature vector field; pseudo-umbilical surfaces; isotropic surfaces.

Tài liệu tham khảo

Bolton, J., Pedit, F., Woodward, L.: Minimal surfaces and the affine Toda field model. J. Reine Angew. Math. 459, 119–150 (1995) Bolton, J., Vrancken, L., Woodward, L.: On almost complex curves in the nearly Kähler \(6\)-sphere. Q. J. Math. Oxford Ser. 45(2), 407–427 (1994) Bolton, J., Vrancken, L., Woodward, L.: Totally real minimal surfaces with non-circular ellipse of curvature in the nearly Kähler \(6\)-sphere. J. Lond. Math. Soc. 56(2), 625–644 (1997) Bolton, J., Woodward, L.: Congruence theorems for harmonic maps from a Riemann surface into \({\mathbb{C}} P^n\) and \(S^n\). J. Lond. Math. Soc. 45(2), 363–376 (1992) Bryant, R.: Submanifolds and special structures on the octonions. J. Differ. Geom. 17, 185–232 (1982) Bryant, R.: Conformal and minimal immersions of compact surfaces into the \(4\)-sphere. J. Differ. Geom. 17, 455–473 (1982) Bryant, R.: Minimal surfaces of constant curvature in \(S^n\). Trans. Am. Math. Soc. 290(1), 259–271 (1985) Burstall, F.E., Wood, J.C.: The construction of harmonic maps into complex Grassmannians. J. Diff. Geom. 23, 255–297 (1986) Chen, B.-Y.: On the surface with parallel mean curvature vector. Indiana Univ. Math. J. 22, 655–666 (1973) Din, A.M., Zakrzewski, W.J.: General classical solutions in the \(\mathbb{C} P^{n-1}\) model. Nuclear Phys. B. 174, 217–263 (1980) Eschenburg, J., Quast, P.: Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula. Math. Z. 264(2), 469–481 (2010) Eells, J., Wood, J.C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49, 217–263 (1983) Guadalupe, I.V., Rodriguez, L.: Normal curvature of surfaces in space forms. Pac. J. Math. 106(1), 95–103 (1983) Grundland, A.M., Strasburger, A., Zakrzewski, W.J.: Surfaces immersed in \(\mathfrak{su}(N+1)\) Lie algebras obtained from the \(\mathbb{C}P^N\) sigma models. J. Phys. A 39(29), 9187–9213 (2006) Grundland, A.M., Zakrzewski, W.J.: \( \mathbb{C}P^{N-1}\) harmonic maps and the Weierstrass problem, integrability, topological solitons and beyond. J. Math. Phys. 44(8), 3370–3382 (2003) Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982) Hashimoto, H., Tanigushi, T., Udagawa, S.: Constructions of almost complex \(2\)-tori of type \((III)\) in the nearly Kähler \(6\)-sphere. Differ. Geom. Appl. 21(2), 127–145 (2004) Hélein, F.: Constant Mean Curvature Surfaces. Lectures in Mathematics , ETH Zürich, Birkhäuser (2001) O’Neil, B.: Isotropic and Kähler immersions. Can. J. Math. 17, 427–440 (1985) Sym, A.: Soliton surfaces and their appliations (Soliton geometry from spectral problems). In: Martini, R. (ed.) Geometric aspects of the Einstein Equations and Integrable Systems. Lecture Notes Physics, vol. 239, pp. 154–231. Springer, Berlin (1986) Pacheco, R.: Immersed surfaces in Lie algebras associated to primitive harmonic maps. Geom. Dedic. 163, 379–390 (2013) Wolfson, J.G.: Harmonic sequences and harmonc maps of surfaces into complex Grassman manifolds. J. Differ. Geom. 27, 161–178 (1988) Yano, K., Chen, B.-Y.: Minimal submanifolds of a higher dimensional sphere. Tensor, N.S 22, 369–373 (1971) Zakrzewski, W.J.: Surfaces in \({\mathbb{R}}^{N^2-1}\) based on harmonic maps \(S^2\rightarrow {\mathbb{C}} P^{N-1}\). J. Math. Phys. 48(11), 113520 (2007)