Surface topological differences of phage infected uropathogenic Escherichia coli (UPEC) strains, revealed by atomic force microscopy

SpringerPlus - Tập 5 - Trang 1-8 - 2016
Bassamah Hanif1, Nusrat Jamil1, Muhammad Raza Shah2
1Department of Microbiology, University of Karachi, Karachi, Pakistan
2International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan

Tóm tắt

Atomic force microscopy (AFM) is an advance microscopic technique that provides three dimensional structures of cell surfaces with high resolution. In the present study AFM was used for comparative analysis of surface topology of phage infected and uninfected Uropathogenic Escherichia coli (UPEC) cells. Two UPEC strains NE and HN were isolated from urine samples of Urinary tract infection patients and their specific narrow host range lytic phages 3S and HNΦ were isolated from the sewage of different areas. On the basis of one step growth curve both phages characterized as short latent period phages with latency period of about 30 min. On AFM analysis significant difference in topology of healthy and infected cells were observed. It was hypothesized that progeny of both lytic phages released out from their respective host cells in different manner. The image of 3S infected UPEC host cells (NE) revealed multiple internal projections which showed progeny phages released out from host cells through these multiple sites. Whereas images of HNΦ infected HN host cells showed central depression which illustrated that new phages released out through single exit point from the middle of cell. These results are significant to extend future studies on isolated phages as an effective tool for phage therapy.

Tài liệu tham khảo

Bolshakova AV, Kiselyova OI, Yaminsky IV (2004) Microbial surfaces investigated using atomic force microscopy. Biotechnol Prog. 20(6):1615–1622. doi:10.1021/bp049742c Carey-Smith GV, Billington C, Cornelius AJ, Hudson JA, Heinemann JA (2006) Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol Lett. 258(2):182–186. doi:10.1111/j.1574-6968.2006.00217.x Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R (2012) Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 13(8):699–722 Dubrovin EV, Voloshin AG, Kraevsky SV, Ignatyuk TE, Abramchuk SS, Yaminsky IV, Ignatov SG (2008) Atomic force microscopy investigation of phage infection of bacteria. Langmuir 24:13068–13074. doi:10.1021/la8022612 Dubrovin EV, Popova AV, Kraevsky SV, Ignatyuk TE, Abramchuk SS, Yaminsky IV, Ignatov SG (2012) Atomic force microscopy analysis of the Acinetobacter baumannii bacteriophage AP22 lytic cycle. PLoS ONE 7(10):e47348 Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol. doi:10.1128/JB.184.19.5205-5213.2002 Foxman B, Buxton M (2013) Alternative approaches to conventional treatment of acute uncomplicated urinary tract infection in women. Curr Infect Dis Rep. doi:10.1007/s11908-013-0317-5 Hooton TM (2012) Uncomplicated urinary tract infection. N Engl J Med. doi:10.1056/NEJMcp1104429 Hsieh SE, Lo HH, Chen ST, Lee MC, Tseng YH (2011) Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2. Appl Environ Microbiol 77(3):756-761. doi:10.1128/AEM.01848-10 Kuznetsov YG, Chang SC, Credaroli A, McPherson A (2013) Unique tail appendages of marine bacteriophages. Adv Microbiol 3:55–59 Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in Human clinical trials. PLoS ONE 4(3):e4944. doi:10.1371/journal.pone.0004944 Mudgal P, Breidt F, Lubkin SR, Sandeep KP (2006) Quantifying the significance of phage attack on starter cultures a mechanistic model for population dynamics of phage and their hosts isolated from fermenting sauerkraut. Appl Environ Microbiol 72(6):3908–3915. doi:10.1128/AEM.02429-05 Müller DJ, Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol. doi:10.1016/j.tcb.2011.04.008 Shao Y, Wang IN (2008) Bacteriophage adsorption rate and optimal lysis time. Genetics. doi:10.1534/genetics.108.090100 Sundar MM, Nagananda GS, Das A, Bhattacharya S, Suryan S (2009) Isolation of host-specific bacteriophages from sewage against human pathogens. Asian J Biotechnol 1:163–170. doi:10.3923/ajbkr.2009.163.170 Udomrat S, Praparn S, et al (2009) High-resolution atomic force microscopic imaging of Escherichia coli immobilized on mica surface. J Microsc Soc Thail. http://mstthailand.com/Journals/2009/B9__SU09JMSTp38_41.pdf Wang A, Lin K (2001) Effects of N-Acetylglucosamine and α-methylglucoside on bacteriophage T4 adsorption to Escherichia coli B23. J Exp Microbiol Immunol. www.microbiology.ubc.ca/sites/default/files/roles/…/1-54.pdf Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131. doi:10.1186/1471-2180-10-131 Zhang Y, Zhang F, Yang J, Jiao N (2011) Host responses of a marine bacterium, Roseobacter denitrificans OCh114, to phage infection. Arch Microbiol 194(5):323-30. doi:10.1007/s00203-011-0765-y