Surface tension of aluminum-oxygen system: A molecular dynamics study
Tài liệu tham khảo
Anson, 1999, The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres, Metall. Mater. Trans. B, 30, 1027, 10.1007/s11663-999-0108-4
Sarou-Kanian, 2003, Surface tension and density of oxygen-free liquid aluminum at high temperature, Int. J. Thermophys., 24, 277, 10.1023/A:1022466319501
Pamies, 1984, The measurement of surface tension of liquid aluminium by means of the maximum bubble pressure method: the effect of surface oxidation, Scr. Metall., 18, 869, 10.1016/0036-9748(84)90251-5
Keene, 1993, Review of data for the surface tension of pure metals, Int. Mater. Rev., 38, 157, 10.1179/imr.1993.38.4.157
Mills, 2006, Review of surface tension data for metallic elements and alloys: part 1 – pure metals, Int. Mater. Rev., 51, 329, 10.1179/174328006X102510
Molina, 2007, The surface tension of liquid aluminium in high vacuum : the role of surface condition, Int. J. Adhes. Adhes., 27, 394, 10.1016/j.ijadhadh.2006.09.006
Saravanan, 2002, Surface tension of pure aluminum in argon/hydrogen and nitrogen/hydrogen atmospheres at high temperatures, J. Mater. Sci. Lett., 21, 309, 10.1023/A:1017988223416
Roach, 2005, A new method to dynamically measure the surface tension, viscosity, and density of melts, Metall. Mater. Trans. B, 36, 667, 10.1007/s11663-005-0057-5
Goumiri, 1979, Tensions superficielles d’alliages liquides binaires présentant un caractère d’immiscibilité: Al-Pb, Al-Bi, Al-Sn et Zn-Bi, Surf. Sci., 83, 471, 10.1016/0039-6028(79)90057-8
Goumiri, 1982, Auger electron spectroscopy study of aluminium-tin liquid system, Acta Metall., 30, 1397, 10.1016/0001-6160(82)90160-2
Chacon, 1984, A theory for liquid metal surface tension, J. Phys. F Met. Phys., 14, 1587, 10.1088/0305-4608/14/7/009
Webb, 2001, Liquid/vapor surface tension of metals: embedded atom method with charge gradient corrections, Phys. Rev. Lett., 86, 2066, 10.1103/PhysRevLett.86.2066
Gheribi, 2019, Modeling the surface tension of liquid metals as a function of oxygen content, J. Non Cryst. Solids, 505, 154, 10.1016/j.jnoncrysol.2018.10.006
Voter, 1986, Accurate interatomic potentials for Ni, Al and Ni3Al, MRS Proc., 82, 175, 10.1557/PROC-82-175
Mishin, 1999, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B, 59, 3393, 10.1103/PhysRevB.59.3393
Foiles, 1987, Application of the embedded atom method to Ni3Al, J. Mater. Res., 2, 5, 10.1557/JMR.1987.0005
Yao, 2002, Surface tension of undercooled liquid cobalt, J. Phys. Condens. Matter., 14, 307, 10.1088/0953-8984/14/32/307
Chen, 2000, A Monte Carlo simulation on surface tension of liquid nickel, Mater. Sci. Eng. A, 292, 203, 10.1016/S0921-5093(00)01013-3
Belashchenko, 2010, Molecular dynamics calculation of surface tension of liquid metals using the embedded atom model, Calphad, 34, 45, 10.1016/j.calphad.2009.11.003
Sauerland, 1993, Surface tension measurements on levitated liquid metal drops, J. Non Cryst. Solids, 156–158, 833, 10.1016/0022-3093(93)90080-H
Hou, 2009, A molecular dynamics simulation on surface tension of liquid Ni and Cu, Comput. Mater. Sci., 46, 516, 10.1016/j.commatsci.2009.04.001
Kirkman, 2004, A new method for investigating the surface tension from molecular dynamics simulations applied to liquid droplets, Computational Materials Science, 30, 126, 10.1016/j.commatsci.2004.01.020
Bourasseau, 2013, Calculation of the surface tension of liquid copper from atomistic Monte Carlo simulations, Eur. Phys. J. B, 86, 251, 10.1140/epjb/e2013-40226-9
Buff, 1955, Spherical interface. II. Molecular theory, J. Chem. Phys., 23, 419, 10.1063/1.1742005
Frank, 1952, Some considerations of surface tension, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 56, 311
Garcia-Cordovilla, 1986, The surface tension of liquid pure aluminium and aluminium-magnesium alloy, J. Mater. Sci., 21, 2787, 10.1007/BF00551490
Friedrichs, 1997, Measurement of viscosity, density and surface tension of metal melts, Steel Res., 68, 209, 10.1002/srin.199701780
Laty, 1977, Tension superficielle d'alliages liquides aluminium-cuivre, Surf. Sci., 69, 508, 10.1016/0039-6028(77)90130-3
Brillo, 2016, Surface tension of liquid Al–Au binary alloys, J. Mater. Sci., 51, 4888, 10.1007/s10853-016-9794-x
Rothwell, 1962, A precise determination of the viscosity of liquid tin, lead, bismuth, and aluminium by an absolute method, J. Inst. Met., 90, 389
von Szyszkowski, 1908, Experimentelle studien über kapillare eigenschaften der wässerigen lösungen von fettsäuren, Z. Phys. Chem., 64, 385, 10.1515/zpch-1908-6425
Gheribi, 2019, Temperature and oxygen adsorption coupling effects upon the surface tension of liquid metals, Sci. Rep., 9, 7113, 10.1038/s41598-019-43500-3
Ozawa, 2016, Surface tension of molten silver in consideration of oxygen adsorption measured by electromagnetic levitation, Int. J. Microgravity Sci. Appl., 33
Campbell, 2005, Oxidation of aluminum nanoclusters, Phys. Rev. B, 71, 1, 10.1103/PhysRevB.71.205413
Hasnaoui, 2006, Nanoscale oxide growth on Al single crystals at low temperatures: variable charge molecular dynamics simulations, Phys. Rev. B, 73, 1, 10.1103/PhysRevB.73.035427
Hasnaoui, 2005, Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals, Surf. Sci., 579, 47, 10.1016/j.susc.2005.01.043
Perron, 2010, Numerical simulations on the growth of thin oxide films on aluminum substrates, Defect Diffus. Forum, 297, 954, 10.4028/www.scientific.net/DDF.297-301.954
Sankaranarayanan, 2009, Electric field tuning of oxygen stoichiometry at oxide surfaces : molecular dynamics simulations studies of zirconia, Energy Environ. Sci., 2, 1196, 10.1039/b913154j
Sankaranarayanan, 2008, Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures, Phys. Rev. B Condens. Matter Mater. Phys., 78, 1, 10.1103/PhysRevB.78.085420
Li, 2013, Size effect on the oxidation of aluminum nanoparticle: multimillion-atom reactive molecular dynamics simulations, J. Appl. Phys., 114, 10.1063/1.4823984
van Beek, 1984, Amorphous and crystalline oxides on aluminium, Thin Solid Films, 122, 131, 10.1016/0040-6090(84)90004-X
Blackburn, 1960, Aluminum reactions with water vapor, dry oxygen, moist oxygen, and moist hydrogen between 500° and 625°C, J. Electrochem. Soc., 107, 944, 10.1149/1.2427576
Hart, 1970, The nucleation and growth of oxide islands on aluminum, Surf. Sci., 20, 285, 10.1016/0039-6028(70)90182-2
Manfredi, 1997, Characterizing the physical and chemical properties of aluminum dross, JOM, 49, 48, 10.1007/s11837-997-0012-9
Atkinson, 1985, Transport processes during the growth of oxide films at elevated temperature, Rev. Mod. Phys., 57, 437, 10.1103/RevModPhys.57.437
Campbell, 1999, Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers, Phys. Rev. Lett., 82, 4866, 10.1103/PhysRevLett.82.4866
Kumar, 2015, Corrigendum: charge optimized many-body (COMB) potential for dynamical simulation of Ni–Al phases, J. Phys. Condens. Matter, 27, 10.1088/0953-8984/27/47/479501
van Duin, 2001, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396, 10.1021/jp004368u
Gutiérrez, 2002, Molecular dynamics study of structural properties of amorphous Al2O3, Phys. Rev. B, 65, 10.1103/PhysRevB.65.104202
Lamparter, 1997, Structure of amorphous Al2O3, Phys. B, 234–236, 405, 10.1016/S0921-4526(96)01044-7
Clark, 2012, Heat-initiated oxidation of an aluminum nanoparticle, MRS Online Proceedings Library (OPL), 1405, 84
Hong, 2015, Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field, J. Phys. Chem. C, 119, 17876, 10.1021/acs.jpcc.5b04650
Sen, 2014, Oxidation-assisted ductility of aluminium nanowires, Nat. Commun., 5, 3959, 10.1038/ncomms4959
Mahdavi, 2019, Rheological properties of super critical CO2 with Al2O3: material type, size and temperature effect, J. Mol. Liq., 289, 10.1016/j.molliq.2019.111037
Plimpton, 2012, Computational aspects of many-body potentials, MRS Bull., 37, 513, 10.1557/mrs.2012.96
Streitz, 1994, Electrostatic potentials for metal-oxide surfaces and interfaces, Phys. Rev. B, 50, 11996, 10.1103/PhysRevB.50.11996
Zhou, 2004, Modified charge transfer-embedded atom method potential for metal/metal oxide systems, Phys. Rev. B Condens. Matter Mater. Phys., 69, 10.1103/PhysRevB.69.035402
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Liu, 2018, Molecular dynamical simulations of melting Al nanoparticles using a Reaxff reactive force field, Mater. Res. Express, 5, 10.1088/2053-1591/aac653
Verlet, 1967, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev., 159, 98, 10.1103/PhysRev.159.98
Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012
Irving, 1950, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys., 18, 817, 10.1063/1.1747782
Nijmeijer, 1988, A molecular dynamics simulation of the Lennard–Jones liquid-vapor interface, J. Chem. Phys., 89, 3789, 10.1063/1.454902
Sun, 2022, Study of the interfacial reactions controlling the spreading of Al on Ni, Appl. Surf. Sci., 571, 151272, 10.1016/j.apsusc.2021.151272
Berry, 2015, Measurement of surface and interfacial tension using pendant drop tensiometry, J. Colloid Interface Sci., 454, 226, 10.1016/j.jcis.2015.05.012
Zhou, 2005, A charge transfer ionic-embedded atom method potential for the O-Al-Ni-Co-Fe system, J. Phys. Condens. Matter, 17, 3619, 10.1088/0953-8984/17/23/014
Shi, 2019, The structure of amorphous and deeply supercooled liquid alumina, Front. Mater., 6, 1
Sahoo, 1988, Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy, Metall. Trans. B, 19, 483, 10.1007/BF02657748
Macleod, 1923, On a relation between surface tension and density, Trans. Faraday Soc., 2, 38, 10.1039/tf9231900038
Ozawa, 2014, Influence of oxygen adsorption on surface tension of molten nickel measured under reducing gas atmosphere, Int. J. Thermophys., 35, 1705, 10.1007/s10765-014-1674-5