Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries

eScience - Tập 2 - Trang 405-415 - 2022
Chao Yue Zhang1,2, Chaoqi Zhang2, Jiang Long Pan1, Guo Wen Sun1, Zude Shi3, Canhuang Li2, Xingqi Chang2, Geng Zhi Sun4, Jin Yuan Zhou1, Andreu Cabot2,5
1School of Physical Science & Technology, Lanzhou University, Lanzhou 730000, China
2Catalonia Institute for Energy Research – IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
3College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
4Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
5ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain

Tài liệu tham khảo

Manthiram, 2014, Rechargeable lithium–sulfur batteries, Chem. Rev., 114, 11751, 10.1021/cr500062v Yuan, 2019, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries, Adv. Energy Mater., 9, 10.1002/aenm.201802768 Nazar, 2014, Lithium-sulfur batteries, MRS Bull., 39, 436, 10.1557/mrs.2014.86 Wu, 2020, Built-in catalysis in confined nanoreactors for high-loading Li–S batteries, ACS Nano, 14, 3365, 10.1021/acsnano.9b09231 Hu, 2018, Double-shelled NiO-NiCo2O4 Heterostructure@Carbon hollow nanocages as an efficient sulfur host for advanced lithium–sulfur batteries, Adv. Energy Mater., 8, 10.1002/aenm.201800709 Chen, 2020, A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries, Energy Environ. Mater., 3, 160, 10.1002/eem2.12073 Sun, 2020, Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries, Adv. Energy Mater., 10, 10.1002/aenm.201904010 Liang, 2021, Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium–sulfur batteries, Adv. Energy Mater., 11 Zhang, 2021, Tubular CoFeP@CN as a mott–Schottky catalyst with multiple adsorption sites for robust Lithium−Sulfur batteries, Adv. Energy Mater., 11 Ye, 2020, Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically, Matter, 2, 323, 10.1016/j.matt.2019.12.020 Lei, 2017, Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries, Adv. Energy Mater., 7, 10.1002/aenm.201601843 Li, 2021, Advances in metal phosphides for sodium-ion batteries, SusMat, 1, 359, 10.1002/sus2.19 Chen, 2020, Li metal deposition and stripping in a solid-state battery via Coble creep, Nature, 578, 251, 10.1038/s41586-020-1972-y Wang, 2020, Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries, Sci. China Chem., 63, 1402, 10.1007/s11426-020-9845-5 Wang, 2014, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials, Nano Lett., 14, 7138, 10.1021/nl503730c Zhang, 2015, Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries, Nano Lett., 15, 3780, 10.1021/acs.nanolett.5b00367 Liu, 2021, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries, ACS Nano, 15, 7491, 10.1021/acsnano.1c00896 He, 2019, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries, Energy Environ. Sci., 12, 344, 10.1039/C8EE03252A Zhang, 2014, Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting, Energy Environ. Sci., 7, 3302, 10.1039/C4EE01932F Yu, 2015, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed., 54, 7395, 10.1002/anie.201502117 Zhen, 2020, Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium–sulfur batteries, ACS Sustain. Chem. Eng., 8, 13318, 10.1021/acssuschemeng.0c03887 Tian, 2019, Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries, Adv. Mater., 32 Luo, 2020, Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5-x nanocluster toward superior Li-S performance, ACS Nano, 14, 4849, 10.1021/acsnano.0c00799 Lin, 2017, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries, Energy Environ. Sci., 10, 1476, 10.1039/C7EE01047H Chen, 2018, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium–sulfur battery, Adv. Mater., 30, 10.1002/adma.201804084 Li, 2020, Tuning the band structure of MoS2 via Co9S8@MoS2 core–shell structure to boost catalytic activity for lithium–sulfur batteries, ACS Nano, 14, 17285, 10.1021/acsnano.0c07332 Zhang, 2020, Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries, Chem. Eng. J., 392, 10.1016/j.cej.2019.123734 Wang, 2018, Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries, ACS Energy Lett., 3, 1627, 10.1021/acsenergylett.8b00856 Waqas, 2020, Molecular ‘capturing’ and ‘seizing’ MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries, Energy Stor. Mater., 27, 333, 10.1016/j.ensm.2020.02.015 Lim, 2019, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics, Angew. Chem. Int. Ed., 58, 18746, 10.1002/anie.201902413 Xia, 2019, Strain engineering of metal-based nanomaterials for energy electrocatalysis, Chem. Soc. Rev., 48, 3265, 10.1039/C8CS00846A Luo, 2017, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.59 Zhu, 2018, Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis, Adv. Mater., 30 Jiao, 2019, Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries, Adv. Energy Mater., 9, 10.1002/aenm.201900219 Zhou, 2019, NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis, Angew. Chem. Int. Ed., 58, 736, 10.1002/anie.201809689 Li, 2021, Electrospinning-based strategies for battery materials, Adv. Energy Mater., 11 Li, 2022, Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater., 4, 43, 10.1007/s42765-021-00088-6 Romano, 1989, On Wulff's law about equilibrium configurations of crystals, Int. J. Eng. Sci., 27, 1135, 10.1016/0020-7225(89)90093-1 van der Berg, 2012, Thermal etching of SiC, Appl. Surf. Sci., 258, 5561, 10.1016/j.apsusc.2011.12.132 Wong, 2015, Core–shell CdS–Cu2S nanorod array solar cells, Nano Lett., 15, 4096, 10.1021/acs.nanolett.5b01203 Kwon, 2015, Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures, Nat. Mater., 14, 215, 10.1038/nmat4115 Mukherjee, 2020, Lattice strain measurement of Core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction, ACS Catal., 10, 5529, 10.1021/acscatal.0c00224 Hÿtch, 1998, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, 74, 131, 10.1016/S0304-3991(98)00035-7 Zhu, 2015, When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting, Adv. Mater., 27, 4752, 10.1002/adma.201501969 Castellanos-Gomez, 2013, Local strain engineering in atomically thin MoS2, Nano Lett., 13, 5361, 10.1021/nl402875m Conley, 2013, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett., 13, 3626, 10.1021/nl4014748 Chang, 2013, Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells, ACS Nano, 7, 9443, 10.1021/nn404272j Sun, 2017, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries, Nat. Commun., 8 Zhou, 2018, Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry, Joule, 2, 2681, 10.1016/j.joule.2018.08.010 Yang, 2020, ZnSe/N-Doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries, ACS Nano, 14, 15492, 10.1021/acsnano.0c06112 Zhang, 2020, Ultrastable lithium–sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides, J. Mater. Chem. A, 8, 18358, 10.1039/D0TA06330D Zhang, 2019, Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries, Adv. Funct. Mater., 29 Zhang, 2021, Deciphering the catalysis essence of vanadium self-intercalated two-dimensional vanadium sulfides (V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries, Energy Stor. Mater., 43, 471, 10.1016/j.ensm.2021.09.030 Zhang, 2018, Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries, Adv. Funct. Mater., 28 Pan, 2020, Layer-spacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li–S batteries, ACS Nano, 14, 5917, 10.1021/acsnano.0c01124 Ma, 2021, Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries, Small, 17, 10.1002/smll.202102710 Zhang, 2015, High capacity and cyclability of hierarchical MoS2/SnO2 nanocomposites as the cathode of lithium-sulfur battery, Electrochim. Acta, 173, 476, 10.1016/j.electacta.2015.05.086 Tang, 2020, Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries, Mater. Chem. Front., 4, 1483, 10.1039/D0QM00082E Wu, 2018, Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites, Adv. Energy Mater., 8, 10.1002/aenm.201802430 Wang, 2021, Insight into MoS2–Mon heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries, Adv. Energy Mater., 11 Tang, 2021, Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries, Electrochim. Acta, 367, 10.1016/j.electacta.2020.137482 Wang, 2021, Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process, Angew. Chem. Int. Ed., 60, 2371, 10.1002/anie.202011493 Wang, 2020, Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode, Energy Stor. Mater., 28, 375, 10.1016/j.ensm.2020.03.023 Zhou, 2017, Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci., 10, 1694, 10.1039/C7EE01430A Meng, 2020, Unearth the understanding of interfacial engineering techniques on nano sulfur cathodes for steady Li–S cell systems, J. Mater. Chem. A, 8, 11976, 10.1039/D0TA04592F Chen, 2020, Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan, Energy Stor. Mater., 30, 187, 10.1016/j.ensm.2020.05.002