Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries
Tài liệu tham khảo
Manthiram, 2014, Rechargeable lithium–sulfur batteries, Chem. Rev., 114, 11751, 10.1021/cr500062v
Yuan, 2019, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries, Adv. Energy Mater., 9, 10.1002/aenm.201802768
Nazar, 2014, Lithium-sulfur batteries, MRS Bull., 39, 436, 10.1557/mrs.2014.86
Wu, 2020, Built-in catalysis in confined nanoreactors for high-loading Li–S batteries, ACS Nano, 14, 3365, 10.1021/acsnano.9b09231
Hu, 2018, Double-shelled NiO-NiCo2O4 Heterostructure@Carbon hollow nanocages as an efficient sulfur host for advanced lithium–sulfur batteries, Adv. Energy Mater., 8, 10.1002/aenm.201800709
Chen, 2020, A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries, Energy Environ. Mater., 3, 160, 10.1002/eem2.12073
Sun, 2020, Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries, Adv. Energy Mater., 10, 10.1002/aenm.201904010
Liang, 2021, Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium–sulfur batteries, Adv. Energy Mater., 11
Zhang, 2021, Tubular CoFeP@CN as a mott–Schottky catalyst with multiple adsorption sites for robust Lithium−Sulfur batteries, Adv. Energy Mater., 11
Ye, 2020, Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically, Matter, 2, 323, 10.1016/j.matt.2019.12.020
Lei, 2017, Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries, Adv. Energy Mater., 7, 10.1002/aenm.201601843
Li, 2021, Advances in metal phosphides for sodium-ion batteries, SusMat, 1, 359, 10.1002/sus2.19
Chen, 2020, Li metal deposition and stripping in a solid-state battery via Coble creep, Nature, 578, 251, 10.1038/s41586-020-1972-y
Wang, 2020, Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries, Sci. China Chem., 63, 1402, 10.1007/s11426-020-9845-5
Wang, 2014, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials, Nano Lett., 14, 7138, 10.1021/nl503730c
Zhang, 2015, Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries, Nano Lett., 15, 3780, 10.1021/acs.nanolett.5b00367
Liu, 2021, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries, ACS Nano, 15, 7491, 10.1021/acsnano.1c00896
He, 2019, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries, Energy Environ. Sci., 12, 344, 10.1039/C8EE03252A
Zhang, 2014, Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting, Energy Environ. Sci., 7, 3302, 10.1039/C4EE01932F
Yu, 2015, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed., 54, 7395, 10.1002/anie.201502117
Zhen, 2020, Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium–sulfur batteries, ACS Sustain. Chem. Eng., 8, 13318, 10.1021/acssuschemeng.0c03887
Tian, 2019, Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries, Adv. Mater., 32
Luo, 2020, Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5-x nanocluster toward superior Li-S performance, ACS Nano, 14, 4849, 10.1021/acsnano.0c00799
Lin, 2017, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries, Energy Environ. Sci., 10, 1476, 10.1039/C7EE01047H
Chen, 2018, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium–sulfur battery, Adv. Mater., 30, 10.1002/adma.201804084
Li, 2020, Tuning the band structure of MoS2 via Co9S8@MoS2 core–shell structure to boost catalytic activity for lithium–sulfur batteries, ACS Nano, 14, 17285, 10.1021/acsnano.0c07332
Zhang, 2020, Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries, Chem. Eng. J., 392, 10.1016/j.cej.2019.123734
Wang, 2018, Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries, ACS Energy Lett., 3, 1627, 10.1021/acsenergylett.8b00856
Waqas, 2020, Molecular ‘capturing’ and ‘seizing’ MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries, Energy Stor. Mater., 27, 333, 10.1016/j.ensm.2020.02.015
Lim, 2019, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics, Angew. Chem. Int. Ed., 58, 18746, 10.1002/anie.201902413
Xia, 2019, Strain engineering of metal-based nanomaterials for energy electrocatalysis, Chem. Soc. Rev., 48, 3265, 10.1039/C8CS00846A
Luo, 2017, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.59
Zhu, 2018, Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis, Adv. Mater., 30
Jiao, 2019, Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries, Adv. Energy Mater., 9, 10.1002/aenm.201900219
Zhou, 2019, NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis, Angew. Chem. Int. Ed., 58, 736, 10.1002/anie.201809689
Li, 2021, Electrospinning-based strategies for battery materials, Adv. Energy Mater., 11
Li, 2022, Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater., 4, 43, 10.1007/s42765-021-00088-6
Romano, 1989, On Wulff's law about equilibrium configurations of crystals, Int. J. Eng. Sci., 27, 1135, 10.1016/0020-7225(89)90093-1
van der Berg, 2012, Thermal etching of SiC, Appl. Surf. Sci., 258, 5561, 10.1016/j.apsusc.2011.12.132
Wong, 2015, Core–shell CdS–Cu2S nanorod array solar cells, Nano Lett., 15, 4096, 10.1021/acs.nanolett.5b01203
Kwon, 2015, Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures, Nat. Mater., 14, 215, 10.1038/nmat4115
Mukherjee, 2020, Lattice strain measurement of Core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction, ACS Catal., 10, 5529, 10.1021/acscatal.0c00224
Hÿtch, 1998, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, 74, 131, 10.1016/S0304-3991(98)00035-7
Zhu, 2015, When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting, Adv. Mater., 27, 4752, 10.1002/adma.201501969
Castellanos-Gomez, 2013, Local strain engineering in atomically thin MoS2, Nano Lett., 13, 5361, 10.1021/nl402875m
Conley, 2013, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett., 13, 3626, 10.1021/nl4014748
Chang, 2013, Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells, ACS Nano, 7, 9443, 10.1021/nn404272j
Sun, 2017, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries, Nat. Commun., 8
Zhou, 2018, Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry, Joule, 2, 2681, 10.1016/j.joule.2018.08.010
Yang, 2020, ZnSe/N-Doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries, ACS Nano, 14, 15492, 10.1021/acsnano.0c06112
Zhang, 2020, Ultrastable lithium–sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides, J. Mater. Chem. A, 8, 18358, 10.1039/D0TA06330D
Zhang, 2019, Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries, Adv. Funct. Mater., 29
Zhang, 2021, Deciphering the catalysis essence of vanadium self-intercalated two-dimensional vanadium sulfides (V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries, Energy Stor. Mater., 43, 471, 10.1016/j.ensm.2021.09.030
Zhang, 2018, Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries, Adv. Funct. Mater., 28
Pan, 2020, Layer-spacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li–S batteries, ACS Nano, 14, 5917, 10.1021/acsnano.0c01124
Ma, 2021, Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries, Small, 17, 10.1002/smll.202102710
Zhang, 2015, High capacity and cyclability of hierarchical MoS2/SnO2 nanocomposites as the cathode of lithium-sulfur battery, Electrochim. Acta, 173, 476, 10.1016/j.electacta.2015.05.086
Tang, 2020, Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries, Mater. Chem. Front., 4, 1483, 10.1039/D0QM00082E
Wu, 2018, Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites, Adv. Energy Mater., 8, 10.1002/aenm.201802430
Wang, 2021, Insight into MoS2–Mon heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries, Adv. Energy Mater., 11
Tang, 2021, Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries, Electrochim. Acta, 367, 10.1016/j.electacta.2020.137482
Wang, 2021, Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process, Angew. Chem. Int. Ed., 60, 2371, 10.1002/anie.202011493
Wang, 2020, Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode, Energy Stor. Mater., 28, 375, 10.1016/j.ensm.2020.03.023
Zhou, 2017, Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci., 10, 1694, 10.1039/C7EE01430A
Meng, 2020, Unearth the understanding of interfacial engineering techniques on nano sulfur cathodes for steady Li–S cell systems, J. Mater. Chem. A, 8, 11976, 10.1039/D0TA04592F
Chen, 2020, Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan, Energy Stor. Mater., 30, 187, 10.1016/j.ensm.2020.05.002
