Surface roughness evolution during early stages of mechanical cyclic loading
Tài liệu tham khảo
Stephens, 2000
Schijve, 2009, Fatigue damage in aircraft structures not wanted but tolerated, Int J Fatigue, 31, 998, 10.1016/j.ijfatigue.2008.05.016
Mughrabi, 2010, Fatigue, an everlasting materials problem – still en vogue, Procedia Eng, 2, 3, 10.1016/j.proeng.2010.03.003
Suresh, 1998
Schijve, 2009
Sangid, 2013, The physics of fatigue crack initiation, Int J Fatigue, 57, 58, 10.1016/j.ijfatigue.2012.10.009
Maier, 2011, The role of grain boundaries on fatigue crack initiation an energy approach, Int J Plasticity, 27, 801, 10.1016/j.ijplas.2010.09.009
Kawagoishi, 2002, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, Int J Fatigue, 24, 1269, 10.1016/S0142-1123(02)00037-3
Gu, 1971, The mechanisms of metal fatigue (ii), Phys Stat Sol B, 47, 359, 10.1002/pssb.2220470202
Ewing, 1903, The fracture of metals under repeated alternations of stress, Phil Trans R Soc A, 241
Gosele, 1981, A model of extrusions and intrusions in fatigued metals. I. Point-defect production and growth of extrusions, Phil Mag A, 44, 405, 10.1080/01418618108239541
Esmann, 1986, A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip, Phil Mag A, 54, 237, 10.1080/01418618608242897
Lukas, 2004, Role of persistent slip bands in fatigue, Phil Mag, 84, 317, 10.1080/14786430310001610339
Man, 2009, Extrusions and intrusions in fatigued metals. Part 1. State of the art and history, Phil Mag, 89, 1295, 10.1080/14786430902917616
Fine, 1989, Microstructural studies on the initiation and growth of small fatigue cracks at 298, 77 and 4.2K in polycrystalline copper, Acta Metall., 37, 2927, 10.1016/0001-6160(89)90327-1
Basinski, 1992, Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals, Prog Mater Sci, 36, 89, 10.1016/0079-6425(92)90006-S
Sehitoglu, 1996
Man, 2003, Study of surface relief evolution in fatigued 316L austenitic stainless steel by AFM, Mater Sci Eng A, 351, 123, 10.1016/S0921-5093(02)00846-8
Man, 2004, AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel, Acta Mater, 52, 5551, 10.1016/j.actamat.2004.08.014
Vystavel, 2009, The shape of extrusions and intrusions and initiation of stage I fatigue cracks, Mater Sci Eng A, 517, 204, 10.1016/j.msea.2009.03.070
Uchic, 2009, Plasticity of micrometer-scale single crystals in compression: a critical review, Annu Rev Mater Res, 39, 361, 10.1146/annurev-matsci-082908-145422
Kraft, 2010, Plasticity in confined dimensions, Annu Rev Mater Res, 40, 293, 10.1146/annurev-matsci-082908-145409
Kiener, 2010, Cyclic response of copper single crystal micro-beams, Scripta Mater, 63, 500, 10.1016/j.scriptamat.2010.05.014
Kirchlechner, 2015, On the reversibility of dislocation slip during small scale low cycle fatigue, Acta Mater, 94, 69, 10.1016/j.actamat.2015.04.029
Liu, 2013, Anomalous plasticity in the cyclic torsion of micron scale metallic wires, Phys Rev Lett, 110, 10.1103/PhysRevLett.110.244301
Liu, 2015, Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity, Mater Sci Eng A, 647, 84, 10.1016/j.msea.2015.08.063
El-Awady, 2016
Deshpande, 2003, Discrete dislocation plasticity modeling of short cracks in single crystals, Acta Mater, 51, 1, 10.1016/S1359-6454(02)00401-9
Déprés, 2004, Low strain fatigue in 316L steel surface grains: a three-dimension discrete dislocation dynamics modeling of the early cycles. Part 1: dislocation microstructures and mechanical behavior, Phil Mag, 84, 2257, 10.1080/14786430410001690051
Déprés, 2006, Low strain fatigue in 316L steel surface grains: a three-dimension discrete dislocation dynamics modeling of the early cycles. Part 2: persistent slip markings and micro-crack nucleation, Phil Mag, 86, 79, 10.1080/14786430500341250
El-Awady JA, Ghoniem NM, Mughrabi H. Dislocation modelling of localized plasticity in persistant slip bands. In: Adams BL, Garmestani, A, editors. Proceedings of the 136th TMS annual meeting and exhibition; 2007. p. 23–35.
Hussein AM, El-Awady JA. Quantifying dislocation microstructure evolution and cyclic hardening in fatigued nickel single-crystals 2016 [submitted].
Tang, 2007, Enabling strain hardening simulations with dislocation dynamics, Mod Simul Mater Sci Eng, 15, 553, 10.1088/0965-0393/15/6/001
Hussein, 2015, Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals, Acta Mater, 85, 180, 10.1016/j.actamat.2014.10.067
Rao, 2009, Atomistic simulations of athermal cross-slip nucleation at screw dislocation intersections in face-centered cubic nickel, Phil Mag, 89, 3351, 10.1080/14786430903286201
Rao, 2010, Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation, Acta Mater, 58, 5547, 10.1016/j.actamat.2010.06.005
Rao, 2011, Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method, Acta Mater, 59, 7135, 10.1016/j.actamat.2011.08.029
Rao, 2013, Spontaneous athermal cross-slip nucleation at screw dislocation intersections in fcc metals and L12 intermetallics investigated via atomistic simulations, Phil Mag, 93, 3012, 10.1080/14786435.2013.799788
Rao, 2013, Atomistic simulations of surface cross-slip nucleation in face-centered cubic nickel and copper, Acta Mater, 61, 2500, 10.1016/j.actamat.2013.01.026
DeWit, 1960, The continuum theory of stationary dislocations, Solid State Phys, 10, 249, 10.1016/S0081-1947(08)60703-1
Weygand, 2002, Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics, Mod Simul Mater Sci Eng, 10, 437, 10.1088/0965-0393/10/4/306
Déprés, 2003, etude des stades precurseurs de l’endommagement en fatigue: experiences et simulations a l’echelle des dislocations, J Phys IV France, 106, 81, 10.1051/jp4:20030218
Peach, 1950, The forces exerted on dislocations and the stress fields produced by them, Phys Rev, 80, 436, 10.1103/PhysRev.80.436
Deltombe, 2014, How to select the most relevant 3d roughness parameters of a surface, Scanning, 36, 150, 10.1002/sca.21113
Mandelbrot, 1982
Zachmann, 1992, Hausdorff dimension as a quantification of local roughness of protein surfaces, J Chem Inf Comut Sci, 32, 120, 10.1021/ci00005a020
Elson, 1995, Calculation of the power spectral density from surface profile data, Appl Optics, 34, 201, 10.1364/AO.34.000201
Duparre, 2002, Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components, Appl Optics, 41, 154, 10.1364/AO.41.000154
El-Awady, 2008, A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes, J Mech Phys Solids, 56, 2019, 10.1016/j.jmps.2007.11.002
Fourie, 1968, The surface effect in micro strain and cyclic loading, Script Metall, 2, 63, 10.1016/0036-9748(68)90170-1
Fourie, 1968, The flow stress gradient between the surface and centre of deformed copper single crystals, Phil Mag, 17, 735, 10.1080/14786436808223026
Mughrabi, 1970, Investigations of plastically deformed copper single crystals in the stress-applied state. I. A study of the dislocation behaviour in the surface region and in the bulk, Phys Status Solidi, 39, 317, 10.1002/pssb.19700390133
Hirth, 1982
Hull, 2001
Howe, 2012
Hochrainer, 2014, Continuum dislocation dynamics: towards a physical theory of crystal plasticity, J Mech Phys Solid, 63, 167, 10.1016/j.jmps.2013.09.012
Cretegny, 2001, AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper, Acta Mater, 49, 3755, 10.1016/S1359-6454(01)00271-3
Cretegny, 2002, Evolution of surface deformation during fatigue of PH 13-8 stainless steel using atomic force microscopy, Fatigue Fract Eng Mater Struct, 25, 305, 10.1046/j.1460-2695.2002.00499.x
Liu, 2011, Dislocation interactions and low-angle grain boundary strengthening, Acta Mater, 59
Liu, 2012, Simulation of dislocation penetration through a general low-angle grain boundary, Acta Mater, 60
Zhou, 2012, Dislocation dynamics simulations of plasticity in polycrystalline thin films, Int J Plasticity, 30-31, 185, 10.1016/j.ijplas.2011.10.001
Quek, 2014, Polycrystal deformation in a discrete dislocation dynamics framework, Acta Mater, 75, 92, 10.1016/j.actamat.2014.04.063
Fan, 2015, The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations, Acta Mater, 92, 126, 10.1016/j.actamat.2015.03.039
Fan, 2015, Orientation influence on grain size effects in ultrafine-grained magnesium, Scripta Mater, 97, 25, 10.1016/j.scriptamat.2014.10.031