Độ nhám bề mặt và khả năng giữ màu của các vật liệu nền hàm thế hệ mới sau khi đánh răng và chu trình nhiệt với cà phê

Journal of Materials Research - Trang 1-11 - 2022
Gülce Çakmak1, Mustafa Borga Donmez1,2, Marcella Silva de Paula1,3, Canan Akay4,5, Amit Chavan6, Martin Schimmel1,7, Burak Yilmaz1,8,9
1Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
2Department of Prosthodontics, Faculty of Dentistry, Istinye University, Istanbul, Turkey
3Department of Prevention and Oral Rehabilitation, Universidade Federal de Goiás, Goiânia, Brazil
4Department of Prosthodontics, Eskisehir Osmangazi University Faculty of Dentistry, Eskisehir, Turkey
5Translational Medicine Research and Clinical Center, Eskişehir Osmangazi University, Eskişehir, Turkey
6Private Practice, Cincinnati, USA
7Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
8Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
9Division of Restorative and Prosthetic Dentistry, The Ohio State University College of Dentistry, Columbus, USA

Tóm tắt

Các mẫu hình đĩa đã được chuẩn bị từ các loại nhựa làm nền hàm chế tạo bằng phương pháp cộng hưởng (NX và DT), phương pháp cắt gọt (MZ) và phương pháp chế tạo truyền thống (CV). Độ nhám bề mặt và tọa độ màu được đo sau khi đánh bóng, mô phỏng đánh răng và chu trình nhiệt với cà phê, trong khi độ nhám bề mặt cũng được đo trước khi đánh bóng. Việc đánh bóng đã làm giảm độ nhám bề mặt của tất cả các vật liệu. Việc đánh răng và chu trình nhiệt với cà phê đã làm tăng độ nhám bề mặt chỉ đối với DT. CV có độ nhám bề mặt cao nhất và nhạy cảm nhất với việc đánh răng liên tiếp và chu trình nhiệt với cà phê, cao hơn ngưỡng chấp nhận lâm sàng. Tất cả các vật liệu đều có khả năng giữ màu tương tự; chỉ có MZ có sự thay đổi màu sắc đáng chú ý sau khi đánh răng. Mặc dù khả năng giữ màu của các loại nhựa làm nền hàm được thử nghiệm là tương tự nhau, nhưng các loại nhựa được chế tạo bằng thiết kế hỗ trợ máy tính và sản xuất hỗ trợ máy tính (CAD-CAM), dù là theo phương pháp cộng hưởng hay cắt gọt, lại có bề mặt mịn hơn sau khi đánh răng và chu trình nhiệt với cà phê, bất kể vật liệu. Do đó, các hàm giả hoàn chỉnh làm từ những loại nhựa CAD-CAM này có thể có các tính chất bề mặt thuận lợi trong thời gian dài.

Từ khóa

#độ nhám bề mặt #khả năng giữ màu #nhựa làm nền hàm #CAD-CAM #chu trình nhiệt với cà phê #đánh răng

Tài liệu tham khảo

C. Dayan, M.C. Guven, B. Gencel, C. Bural, A comparison of the color stability of conventional and CAD/CAM polymethyl methacrylate denture base materials. Acta Stomatol. Croat. 53(2), 158–167 (2019). https://doi.org/10.15644/asc53/2/8 S. Gruber, P. Kamnoedboon, M. Özcan, M. Srinivasan, CAD/CAM complete denture resins: an in vitro evaluation of color stability. J. Prosthodont. 30(5), 430–439 (2021). https://doi.org/10.1111/jopr.13246 M. Arslan, S. Murat, G. Alp, A. Zaimoglu, Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures. Int. J. Comput. Dent. 21(1), 31–40 (2018) H. Neshandar Asli, S. Rahimabadi, Y. Babaee Hemmati, M. Falahchai, Effect of different surface treatments on surface roughness and flexural strength of repaired 3D-printed denture base: an in vitro study. J. Prosthet. Dent. 126(4), 595.e1-595.e8 (2021). https://doi.org/10.1016/j.prosdent.2021.07.005 G. Alp, W.M. Johnston, B. Yilmaz, Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J. Prosthet. Dent. 121(2), 347–352 (2019). https://doi.org/10.1016/j.prosdent.2018.03.001 Y.H. Chang, C.Y. Lee, M.S. Hsu, J.K. Du, K.K. Chen, J.H. Wu, Effect of toothbrush/dentifrice abrasion on weight variation, surface roughness, surface morphology and hardness of conventional and CAD/CAM denture base materials. Dent. Mater. J. 40(1), 220–227 (2021). https://doi.org/10.4012/dmj.2019-226 A.F. Alfouzan, H.M. Alotiabi, N. Labban, H.N. Al-Otaibi, S.M. Al Taweel, H.A. AlShehri, Color stability of 3D-printed denture resins: effect of aging, mechanical brushing and immersion in staining medium. J. Adv. Prosthodont. 13(3), 160–171 (2021). https://doi.org/10.4047/jap.2021.13.3.160 D.B. Sorgini, C.H. da Silva-Lovato, V.A. Muglia, R.F. de Souza, C.N. de Arruda, F.H. de Paranhos, Adverse effects on PMMA caused by mechanical and combined methods of denture cleansing. Braz. Dent. J. 26(3), 292–296 (2015). https://doi.org/10.1590/0103-6440201300028 K.M. de Freitas Pontes, J.C. de Holanda, C.S. Fonteles, B.C. de Pontes, C.H. Lovato da Silva, F.H. de Paranhos, Effect of toothbrushes and denture brushes on heat-polymerized acrylic resins. Gen. Dent. 64(1), 49–53 (2016) M.X. Pisani, J.P. Bruhn, H.F. Paranhos, C.H. Silva-Lovato, R.F. de Souza, H. Panzeri, Evaluation of the abrasiveness of dentifrices for complete dentures. J. Prosthodont. 19(5), 369–373 (2010). https://doi.org/10.1111/j.1532-849X.2010.00592.x L.A. Shinawi, Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base. Electron. Phys. 9(5), 4281–4288 (2017). https://doi.org/10.19082/4281 D.B. Sorgini, C.H. Silva-Lovato, R.F. de Souza, L.R. Davi, F.H. de Paranhos, Abrasiveness of conventional and specific denture-cleansing dentifrices. Braz. Dent. J. 23(2), 154–159 (2012). https://doi.org/10.1590/s0103-64402012000200011 A.F. Alfouzan, H.M. Alotiabi, N. Labban, H.N. Al-Otaibi, S.M. Al-Taweel, H.A. AlShehri, Effect of aging and mechanical brushing on surface roughness of 3D printed denture resins: a profilometer and scanning electron microscopy analysis. Technol. Health Care 30(1), 161–173 (2022). https://doi.org/10.3233/THC-212974 S. Atalay, G. Çakmak, M. Fonseca, M. Schimmel, B. Yilmaz, Effect of thermocycling on the surface properties of CAD-CAM denture base materials after different surface treatments. J. Mech. Behav. Biomed. Mater. 121, 104646 (2021). https://doi.org/10.1016/j.jmbbm.2021.104646 H. Gungor, M. Gundogdu, Z. Yesil Duymus, Investigation of the effect of different polishing techniques on the surface roughness of denture base and repair materials. J. Prosthet. Dent. 112(5), 1271–1277 (2014). https://doi.org/10.1016/j.prosdent.2014.03.023 C.M. Bollen, W. Papaioanno, J. Van Eldere, E. Schepers, M. Quirynen, D. van Steenberghe, The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin. Oral Implants Res. 7(3), 201–211 (1996). https://doi.org/10.1034/j.1600-0501.1996.070302.x F.D. Al-Qarni, C.J. Goodacre, M.T. Kattadiyil, N.Z. Baba, R.D. Paravina, Stainability of acrylic resin materials used in CAD-CAM and conventional complete dentures. J. Prosthet. Dent. 123(6), 880–887 (2020). https://doi.org/10.1016/j.prosdent.2019.07.004 M.C. Goiato, D.M. Dos Santos, G.T. Baptista, A. Moreno, A.M. Andreotti, L.C. Bannwart, S.F. Dekon, Effect of thermal cycling and disinfection on colour stability of denture base acrylic resin. Gerodontology 30(4), 276–282 (2013). https://doi.org/10.1111/j.1741-2358.2012.00676.x J. Ren, H. Lin, Q. Huang, G. Zheng, Determining color difference thresholds in denture base acrylic resin. J. Prosthet. Dent. 114(5), 702–708 (2015). https://doi.org/10.1016/j.prosdent.2015.06.009 N.P. Sagsoz, N. Yanıkoglu, H. Ulu, F. Bayındır, Color changes of polyamid and polymetyhl methacrylate denture base materials. OJST 4(10), 489–496 (2014). https://doi.org/10.4236/ojst.2014.410066 E.A. Ayaz, B. Bağış, S. Turgut, Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethylmethacrylate and polyamide denture base resins. J. Appl. Biomater. Funct. Mater. 13(3), e280-286 (2015). https://doi.org/10.5301/jabfm.5000236 M.M. Gad, S.M. Fouda, R. Abualsaud, F.A. Alshahrani, A.M. Al-Thobity, S.Q. Khan, S. Akhtar, I.S. Ateeq, M.A. Helal, F.A. Al-Harbi, Strength and surface properties of a 3D-printed denture base polymer. J. Prosthodont. 31(5), 412–418 (2022). https://doi.org/10.1111/jopr.13413 Z. Al-Dwairi, A.A. Al Haj Ebrahim, N.Z. Baba, A comparison of the surface and mechanical properties of 3D printable denture-base resin material and conventional polymethylmethacrylate (PMMA). J. Prosthodont. (2022). https://doi.org/10.1111/jopr.13491 A. Di Fiore, R. Meneghello, P. Brun, S. Rosso, A. Gattazzo, E. Stellini, B. Yilmaz, Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: an in vitro study. J. Prosthodont. Res. (2021). https://doi.org/10.2186/jpr.JPR_D_21_00116 M. Srinivasan, N. Kalberer, P. Kamnoedboon, M. Mekki, S. Durual, M. Özcan, F. Müller, CAD-CAM complete denture resins: an evaluation of biocompatibility, mechanical properties, and surface characteristics. J. Dent. 114, 103785 (2021). https://doi.org/10.1016/j.jdent.2021.103785 C. Livas, T. Baumann, S. Flury, N. Pandis, Quantitative evaluation of the progressive wear of powered interproximal reduction systems after repeated use : an in vitro study. J. Orofac. Orthop. 81(1), 22–29 (2020). https://doi.org/10.1007/s00056-019-00200-x O. Sahin, A. Koroglu, D. Dede, B. Yilmaz, Effect of surface sealant agents on the surface roughness and color stability of denture base materials. J. Prosthet. Dent. 116(4), 610–616 (2016). https://doi.org/10.1016/j.prosdent.2016.03.007 S. Flury, E. Diebold, A. Peutzfeldt, A. Lussi, Effect of artificial toothbrushing and water storage on the surface roughness and micromechanical properties of tooth-colored CAD-CAM materials. J. Prosthet. Dent. 117(6), 767–774 (2017). https://doi.org/10.1016/j.prosdent.2016.08.034 G.R. Goldstein, T. Lerner, The effect of toothbrushing on a hybrid composite resin. J. Prosthet. Dent. 66(4), 498–500 (1991). https://doi.org/10.1016/0022-3913(91)90511-t C.P. Turssi, A.T. Hara, C.S. de Magalhães, M.C. Serra, A.L. Rodrigues Jr., Influence of storage regime prior to abrasion on surface topography of restorative materials. J. Biomed. Mater. Res. B Appl. Biomater. 65(2), 227–232 (2003). https://doi.org/10.1002/jbm.b.10005 E.L. Viana, G.S. Weiss, L.O. Sakae, S.H. Niemeyer, A.B. Borges, T. Scaramucci, Activated charcoal toothpastes do not increase erosive tooth wear. J. Dent. 109, 103677 (2021). https://doi.org/10.1016/j.jdent.2021.103677 T.A. Sulaiman, R.N. Camino, R. Cook, A.J. Delgado, J.F. Roulet, W.A. Clark, Time-lasting ceramic stains and glaze: a toothbrush simulation study. J. Esthet. Restor. Dent. 32(6), 581–585 (2020). https://doi.org/10.1111/jerd.12590 O. Acar, B. Yilmaz, S.H. Altintas, I. Chandrasekaran, W.M. Johnston, Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 115(1), 71–75 (2016). https://doi.org/10.1016/j.prosdent.2015.06.014 M.S. Gale, B.W. Darvell, Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 27(2), 89–99 (1999). https://doi.org/10.1016/s0300-5712(98)00037-2 Y.K. Lee, Comparison of CIELAB DeltaE(*) and CIEDE2000 color-differences after polymerization and thermocycling of resin composites. Dent. Mater. 21(7), 678–682 (2005). https://doi.org/10.1016/j.dental.2004.09.005 The Saremco Website. www.saremco.ch/wp-content/uploads/2020/09/MSDS-Denturetec-en_07-2020.pdf. Accessed 13 June 2022 The NextDent Website. https://store.avadent.com/wp-content/uploads/2018/11/SDS_NextDent-Denture-3D_V2.0_20180122_EN.pdf . Accessed 25 May 2022 V.E.S. Gajewski, C.S. Pfeifer, N.R.G. Fróes-Salgado, L.C.C. Boaro, R.R. Braga, Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 23(5), 508–514 (2012). https://doi.org/10.1590/s0103-64402012000500007 Z.N. Al-Dwairi, K.Y. Tahboub, N.Z. Baba, C.J. Goodacre, M. Özcan, A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J. Prosthodont. 28(4), 452–457 (2019). https://doi.org/10.1111/jopr.13033