Surface plasmon resonance sensing of Ebola virus: a biological threat
Tóm tắt
Tài liệu tham khảo
Gire SK, Goba A, Andersen KG. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345:1369–72. https://doi.org/10.1126/science.1259657.
World Health Organization. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases 2015 (Vol. 3). World Health Organization. DOI: https://doi.org/10.1596/978-1-4648-0524-0/ch17.
World Health Organization. Ebola situation reports: Democratic Republic of the Congo. (2018) doi: https://doi.org/10.2807/1560-7917.
Baden LR, Kanapathipillai R, Campion EW, Morrissey S, Rubin EJ, Drazen JM. Ebola—an ongoing crisis. N Engl J Med. 2014;371:1458–9. https://doi.org/10.1056/NEJMe1411378.
Beeching NJ, Fenech M, Houlihan CF. Ebola virus disease. BMJ. 2014;349. https://doi.org/10.1136/bmj.g7348.
Nguyen VK, Binder SC, Boianelli A, Meyer-Hermann M, Hernandez-Vargas EA. Ebola virus infection modeling and identifiability problems. Front Microbiol. 2015;6:257–67. https://doi.org/10.3389/fmicb.2015.00257.
Butler D. Ebola experts seek to expand testing. Nat News. 2014;516:154. https://doi.org/10.1038/516154a.
Daaboul GG, Lopez CA, Chinnala J, Goldberg BB, Connor JH, Unlu MS. Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection. ACS Nano. 2014;8:6047–55. https://doi.org/10.1021/nn501312q.
Changula K, Yoshida R, Noyori O. Mapping of conserved and species-specific antibody epitopes on the Ebola virus nucleoprotein. Virus Res. 2013;176:83–90. https://doi.org/10.1016/j.virusres.2013.05.004.
Qiu X, Audet J, Wong G. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci Rep. 2013;3:3365. https://doi.org/10.1038/srep03365.
Hussein HA, Hassan RY, El Nashar RM, Khalil SA, Salem SA, El-Sherbiny IM. Designing and fabrication of new VIP biosensor for the rapid and selective detection of foot-and-mouth disease virus (FMDV). Biosens Bioelectron. 2019;141:111467. https://doi.org/10.1016/j.bios.2019.111467.
Ro YT, Ticer A, Carrion R Jr, Patterson JL. Rapid detection and quantification of Ebola Zaire virus by one-step real-time quantitative reverse transcription-polymerase chain reaction. Microbiol Immunol. 2017;61:130–7. https://doi.org/10.1111/1348-0421.12475.
Cross RW, Ksiazek TG. ELISA methods for the detection of Ebola virus infection. In Ebola viruses, Humana Press, New York, NY. 2017:363–72. https://doi.org/10.1007/978-1-4939-7116-9_29.
Du K, Cai H, Park M. Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus. Biosens Bioelectron. 2017;91:489–96. https://doi.org/10.1016/j.bios.2016.12.071.
Giuffrida MC, Spoto G. Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosens Bioelectron. 2017;90:174–86. https://doi.org/10.1016/j.bios.2016.11.045.
Sina AAI, Vaidyanathan R, Wuethrich A, Carrascosa LG, Trau M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem. 2019;411:1311–8. https://doi.org/10.1007/s00216-019-01608-5.
Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, et al. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron. 2019;142:111449–64. https://doi.org/10.1016/j.bios.2019.111449.
Gupta G, Bhaskar ASB, Tripathi BK, Pandey P, Boopathi M, Rao PVL, et al. Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry. Biosens Bioelectron. 2011;26:2534–40. https://doi.org/10.1016/j.bios.2010.10.050.
Gupta G, Kumar A, Boopathi M. Rapid and quantitative determination of biological warfare agent Brucella abortus CSP-31 using surface plasmon resonance. Anal Bioanal Electrochem. 2011;3:26–37. https://doi.org/10.3390/s130708551.
Lago S, Nadai M, Rossetto M, Richter SN. Surface plasmon resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody. Biochim. Biophys. Acta (BBA)-General Subjects. 2018;1862:1276–82. https://doi.org/10.1016/j.bbagen.2018.03.002.
Bard AJ, Faulkner LR, Leddy J, Zoski CG. Electrochemical methods: fundamentals and applications (Vol. 2). New York: Wiley; 1980.
Huang Y, Bell MC, Suni II. Impedance biosensor for peanut protein Ara h 1. Anal Chem. 2008;80:9157–61. https://doi.org/10.1021/ac801048g.
Ma C, Harris JM. Surface-enhanced Raman spectroscopy investigation of the potential-dependent acid−base chemistry of silver-immobilized 2-mercaptobenzoic acid. Langmuir. 2011;27:3527–33. https://doi.org/10.1021/la1044859.
Mohseni S, Moghadam TT, Dabirmanesh B, Jabbari S, Khajeh K. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens Bioelectron. 2016;81:510–6. https://doi.org/10.1016/j.bios.2016.03.038.
Babu HKRR, Gheber LA. Fluorescence-based kinetic analysis of miniaturized protein microarrays. Biosens Bioelectron. 2018;122:290–9. https://doi.org/10.1016/j.bios.2018.09.05.
Sadana A, Sadana N. Handbook of biosensors and biosensor kinetics. Elsevier. 2010. https://doi.org/10.1080/00107514.2011.603431.
Touhami A. Biosensors and nanobiosensors: design and applications. Nanomedicine. 2014;15:374–403. https://doi.org/10.1039/b718174d.65.
Liu JT, Chen LY, Shih MC, Chang Y, Chen WY. The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal Biochem. 2008;375:90–6. https://doi.org/10.1016/j.ab.2008.01.004.
Sikarwar B, Sharma PK, Saraswat S, Athmaram TN, Boopathi M, Singh B, et al. Surface plasmon resonance immunosensor for recombinant H1N1 protein. Plasmonics. 2015;10:77–85. https://doi.org/10.1007/s11468-014-9780-6.
Kuroki K, Maenaka K. Analysis of receptor–ligand interactions by surface plasmon resonance. Totowa, NJ: In Immune Receptors Humana Press; 2011. p. 83–106. https://doi.org/10.1007/978-1-61779-139-06.
Myszka DG. Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzymol Academic Press. 2000;323:325–40. https://doi.org/10.1016/S0076-6879(00)23372-7.
Wang W, Zhu Y, Chen T, Zhou G. Kinetic and thermodynamic analysis of ultra-high pressure and heat-induced denaturation of bovine serum albumin by surface plasmon resonance. Trop J Pharm Res. 2017;16:1965–72. https://doi.org/10.4314/tjpr.v16i8.29.
Khalili H, Brocchini S, Khaw PT, Filippov SK. Comparative thermodynamic analysis in solution of a next generation antibody mimetic to VEGF. RSC Adv. 2018;8:35787–93. https://doi.org/10.1039/C8RA07059H.
Bostrom J, Haber L, Koenig P, Kelley RF, Fuh G. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity. PLoS One. 2011;6:e17887. https://doi.org/10.1371/journal.pone.0017887.
Hearty S, Leonard P, O’Kennedy R. Measuring antibody–antigen binding kinetics using surface plasmon resonance. Totowa, N.J.: In Antibody Engineering Humana Press; 2012. p. 411–42. https://doi.org/10.1007/978-1-61779-974-7_24.
Altschuh D, Dubs MC, Weiss E, Zeder-Lutz G, Van Regenmortel MH. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry. 1992;31:6298–304. https://doi.org/10.1021/bi00142a019.
Rempel B, Gui B, Maley J, Reaney M, Sammynaiken R, Biomolecular Interaction Study of Cyclolinopeptide A with Human Serum Albumin. BioMed Research International. 2010; 2010: Article ID 737289J. https://doi.org/10.1155/2010/737289.
Van Oss CJ, Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. Molecular Immunology.1995;32:199–211. https://doi.org/10.1016/0161-5890(94)00124-J.