Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane

Ceramics International - Tập 44 - Trang 20974-20983 - 2018
Rongqian Yao1,2,3, Yinong Zheng1,2, Liang Liao1,2,3, Rui Zhou1,2,3, Zude Feng1,2,3
1Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
2Fujian Key Laboratory of Advanced Materials (Xiamen University), Xiamen, 361005, China
3Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, Xiamen 361005, China

Tài liệu tham khảo

Wijesundara, 2011 Chung, 2008, Ohmic contacts to polycrystalline 3C-SiC films for extreme environment microdevices, Ceram. Int., 34, 837, 10.1016/j.ceramint.2007.09.086 Mehregany, 1999, SiC MEMS: opportunities and challenges for applications in harsh environments, Thin Solid Films, 355–356, 518, 10.1016/S0257-8972(99)00374-6 Duan, 2014, Etching process of silicon carbide from polysiloxane by chlorine, Corros. Sci., 87, 127, 10.1016/j.corsci.2014.06.014 Chung, 2008, Characteristics of polycrystalline 3C-SiC thin films grown on Si wafers for harsh environment microdevices, Ceram. Int., 34, 841, 10.1016/j.ceramint.2007.09.089 Xun, 2017, Application of SiC power electronic devices in secondary power source for aircraft, Renew. Sust. Energy Rev., 70, 1336, 10.1016/j.rser.2016.12.035 Fiorenza, 2018, Temperature-dependent Fowler-Nordheim electron barrier height in SiO2/4H-SiC MOS capacitors, Mater. Sci. Semicond. Proc., 78, 38, 10.1016/j.mssp.2017.11.024 Liang, 2015, Growth of 3C-SiC films on Si substrates by vapor-liquid-solid tri-phase epitaxy, Ceram. Int., 41, 7640, 10.1016/j.ceramint.2015.02.091 Vakifahmetoglu, 2016, Porous polymer derived ceramics, Mat. Sci. Eng. R, 106, 1, 10.1016/j.mser.2016.05.001 Mucalo, 1994, Preparation of ceramic coatings from pre-ceramic precursors, Part I, SiC and "Si3N4/Si2N2O" coatings on alumina substrates, J. Mater. Sci., 29, 4487, 10.1007/BF00376271 Mukherjee, 2013, Liquid polycarbosilane derived SiC coating on silicon (111) wafer for enhanced mechanical properties, Appl. Surf. Sci., 270, 219, 10.1016/j.apsusc.2013.01.003 Yang, 2015, The properties of Cf/SiC composites prepared from different precursors, Ceram. Int., 41, 4207, 10.1016/j.ceramint.2014.12.111 Yao, 2009, Synthesis and characterization of continuous freestanding silicon carbide films with polycarbosilane (PCS), J. Eur. Ceram. Soc., 29, 2079, 10.1016/j.jeurceramsoc.2008.11.019 Yao, 2012, Preparation and characterization of freestanding SiC(Ti, B) films derived from polycarbosilane with TiN and B as additives, J. Eur. Ceram. Soc., 32, 2565, 10.1016/j.jeurceramsoc.2012.02.004 Yao, 2013, Effects of oxidation curing and Al atoms on the formation of near-stoichiometric freestanding SiC(Al) films derived from polyaluminocarbosilane (PACS), J. Eur. Ceram. Soc., 33, 1675, 10.1016/j.jeurceramsoc.2013.01.028 Xu, 2016, Effects of oxidation cross-linking and sintering additives (TiN, B) on the formation and heat-resistant performance of polymer-derived SiC(Ti, B) films, Ceram. Int., 42, 8636, 10.1016/j.ceramint.2016.02.095 Bawane, 2018, High temperature oxidation behavior of silicon carbide-carbon coated nanostructured ferritic alloy composites in air + water vapor environment, Corros. Sci., 139, 206, 10.1016/j.corsci.2018.05.008 Park, 2014, Oxidation behavior of silicon carbide at 1200 °C in both air and water-vapor-rich environments, Corros. Sci., 88, 416, 10.1016/j.corsci.2014.07.052 Charpentier, 2010, High temperature oxidation of SiC under helium with low-pressure oxygen—Part 1: sintered α-SiC, J. Eur. Ceram. Soc., 30, 2653, 10.1016/j.jeurceramsoc.2010.04.025 Ghodssi, 2011 Sarro, 2000, Silicon carbide as a new MEMS technology, Sens. Actuators Phys., 82, 210, 10.1016/S0924-4247(99)00335-0 Liew, 2001, Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators Phys., 89, 64, 10.1016/S0924-4247(00)00545-8 Narushima, 1990, High-temperature oxidation of chemically vapor-deposited silicon carbide in wet oxygen at 1823 to 1923 K, J. Am. Ceram. Soc., 73, 3580, 10.1111/j.1151-2916.1990.tb04261.x Irene, 1977, Silicon oxidation studies: the role of H2O, J. Electrochem. Soc., 124, 1757, 10.1149/1.2133151 Lu, 1984, Thermal oxidation of sputtered silicon carbide thin films, J. Electrochem. Soc., 131, 1907, 10.1149/1.2115988 Opila, 1994, Oxidation kinetics of chemically vapor-deposited silicon carbide in wet oxygen, J. Am. Ceram. Soc., 77, 730, 10.1111/j.1151-2916.1994.tb05357.x Wu, 2006, Wet oxidation behaviors of Hi-Nicalon fibers, Appl. Surf. Sci., 253, 1447, 10.1016/j.apsusc.2006.02.021 Wu, 2013, Oxidation behavior of 3D Hi-Nicalon/SiC composite exposed in wet and simulated air environments, Corros. Sci., 66, 111, 10.1016/j.corsci.2012.09.008 Yao, 2012, Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2-H2O-Ar atmospheres, Corros. Sci., 57, 182, 10.1016/j.corsci.2011.12.019 Liao, 2018, Effects of oxidation curing and sintering temperature on the microstructure formation and heat transfer performance of freestanding polymer-derived SiC films for high-power LEDs, Ceram. Int., 44, 6072, 10.1016/j.ceramint.2017.12.238 Balat, 1996, Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air, J. Eur. Ceram. Soc., 16, 55, 10.1016/0955-2219(95)00104-2 Opila, 1999, SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model, J. Am. Ceram. Soc., 82, 1826, 10.1111/j.1151-2916.1999.tb02005.x Heuer, 1990, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation, J. Am. Ceram. Soc., 73, 2789, 10.1111/j.1151-2916.1990.tb06677.x Laanani, 1997 Cupid, 2007, Thermodynamic calculations and phase stabilities in the Y-Si-C-O System, J. Phase Equilib. Diff., 28, 90, 10.1007/s11669-006-9014-5 Groebner, 1994 Vahlas, 1995, Thermodynamic study of the thermal degradation of SiC-based fibres: influence of SiC grain size, J. Mater. Sci. Lett., 14, 1558, 10.1007/BF00455414 Li, 2003, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97, 481, 10.1016/S0304-3991(03)00077-9 Yao, 2008, The effect of high-temperature annealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere, Fatigue Fract. Eng. Mater., 31, 777 Li, 2008, Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2-H2O-Ar atmospheres, Mater. Sci. Eng. Struct., 487, 424, 10.1016/j.msea.2007.10.035 Song, 2004, Modified Deal Grove model for the thermal oxidation of silicon carbide, J. Appl. Phys., 95, 4953, 10.1063/1.1690097 Deal, 1965, General relationship for the thermal oxidation of silicon, J. Appl. Phys., 36, 3770, 10.1063/1.1713945 Jorgensen, 1959, Oxidation of silicon carbide, J. Am. Ceram. Soc., 42, 613, 10.1111/j.1151-2916.1959.tb13582.x Šimonka, 2016, Growth rates of dry thermal oxidation of 4H-silicon carbide, J. Appl. Phys., 120, 135705, 10.1063/1.4964688 Opila, 1999, Variation of the oxidation rate of silicon carbide with water-vapor pressure, J. Am. Ceram. Soc., 82, 625, 10.1111/j.1151-2916.1999.tb01810.x Shimoo, 2000, Oxidation kinetics of low-oxygen silicon carbide fiber, J. Mater. Sci., 35, 3301, 10.1023/A:1004883607913 Chung, 2005, Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications, Sens. Actuat. A-Phys., 119, 599, 10.1016/j.sna.2004.10.004 Koh, 2001, Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide, Appl. Surf. Sci., 174, 210, 10.1016/S0169-4332(01)00150-7 Goto, 2015, Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry, J. Appl. Phys., 117, 095306, 10.1063/1.4914050 Luthra, 1991, Some new perspectives on oxidation of silicon carbide and silicon nitride, J. Am. Ceram. Soc., 74, 1095, 10.1111/j.1151-2916.1991.tb04348.x Gao, 2006, Polycrystalline silicon carbide as a substrate material for reducing adhesion in MEMS, Tribol. Lett., 21, 226, 10.1007/s11249-006-9024-9 Chai, 2015, Silicon etching using only oxygen at high temperature: an alternative approach to Si micro-machining on 150 mm Si wafers, Sci. Rep., 5, 17811, 10.1038/srep17811 Tiwari, 2014, Low-temperature silicon-to-silicon anodic bonding using sodium-rich glass for MEMS applications, J. Electron. Mater., 43, 555, 10.1007/s11664-013-2844-0