Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane
Tài liệu tham khảo
Wijesundara, 2011
Chung, 2008, Ohmic contacts to polycrystalline 3C-SiC films for extreme environment microdevices, Ceram. Int., 34, 837, 10.1016/j.ceramint.2007.09.086
Mehregany, 1999, SiC MEMS: opportunities and challenges for applications in harsh environments, Thin Solid Films, 355–356, 518, 10.1016/S0257-8972(99)00374-6
Duan, 2014, Etching process of silicon carbide from polysiloxane by chlorine, Corros. Sci., 87, 127, 10.1016/j.corsci.2014.06.014
Chung, 2008, Characteristics of polycrystalline 3C-SiC thin films grown on Si wafers for harsh environment microdevices, Ceram. Int., 34, 841, 10.1016/j.ceramint.2007.09.089
Xun, 2017, Application of SiC power electronic devices in secondary power source for aircraft, Renew. Sust. Energy Rev., 70, 1336, 10.1016/j.rser.2016.12.035
Fiorenza, 2018, Temperature-dependent Fowler-Nordheim electron barrier height in SiO2/4H-SiC MOS capacitors, Mater. Sci. Semicond. Proc., 78, 38, 10.1016/j.mssp.2017.11.024
Liang, 2015, Growth of 3C-SiC films on Si substrates by vapor-liquid-solid tri-phase epitaxy, Ceram. Int., 41, 7640, 10.1016/j.ceramint.2015.02.091
Vakifahmetoglu, 2016, Porous polymer derived ceramics, Mat. Sci. Eng. R, 106, 1, 10.1016/j.mser.2016.05.001
Mucalo, 1994, Preparation of ceramic coatings from pre-ceramic precursors, Part I, SiC and "Si3N4/Si2N2O" coatings on alumina substrates, J. Mater. Sci., 29, 4487, 10.1007/BF00376271
Mukherjee, 2013, Liquid polycarbosilane derived SiC coating on silicon (111) wafer for enhanced mechanical properties, Appl. Surf. Sci., 270, 219, 10.1016/j.apsusc.2013.01.003
Yang, 2015, The properties of Cf/SiC composites prepared from different precursors, Ceram. Int., 41, 4207, 10.1016/j.ceramint.2014.12.111
Yao, 2009, Synthesis and characterization of continuous freestanding silicon carbide films with polycarbosilane (PCS), J. Eur. Ceram. Soc., 29, 2079, 10.1016/j.jeurceramsoc.2008.11.019
Yao, 2012, Preparation and characterization of freestanding SiC(Ti, B) films derived from polycarbosilane with TiN and B as additives, J. Eur. Ceram. Soc., 32, 2565, 10.1016/j.jeurceramsoc.2012.02.004
Yao, 2013, Effects of oxidation curing and Al atoms on the formation of near-stoichiometric freestanding SiC(Al) films derived from polyaluminocarbosilane (PACS), J. Eur. Ceram. Soc., 33, 1675, 10.1016/j.jeurceramsoc.2013.01.028
Xu, 2016, Effects of oxidation cross-linking and sintering additives (TiN, B) on the formation and heat-resistant performance of polymer-derived SiC(Ti, B) films, Ceram. Int., 42, 8636, 10.1016/j.ceramint.2016.02.095
Bawane, 2018, High temperature oxidation behavior of silicon carbide-carbon coated nanostructured ferritic alloy composites in air + water vapor environment, Corros. Sci., 139, 206, 10.1016/j.corsci.2018.05.008
Park, 2014, Oxidation behavior of silicon carbide at 1200 °C in both air and water-vapor-rich environments, Corros. Sci., 88, 416, 10.1016/j.corsci.2014.07.052
Charpentier, 2010, High temperature oxidation of SiC under helium with low-pressure oxygen—Part 1: sintered α-SiC, J. Eur. Ceram. Soc., 30, 2653, 10.1016/j.jeurceramsoc.2010.04.025
Ghodssi, 2011
Sarro, 2000, Silicon carbide as a new MEMS technology, Sens. Actuators Phys., 82, 210, 10.1016/S0924-4247(99)00335-0
Liew, 2001, Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators Phys., 89, 64, 10.1016/S0924-4247(00)00545-8
Narushima, 1990, High-temperature oxidation of chemically vapor-deposited silicon carbide in wet oxygen at 1823 to 1923 K, J. Am. Ceram. Soc., 73, 3580, 10.1111/j.1151-2916.1990.tb04261.x
Irene, 1977, Silicon oxidation studies: the role of H2O, J. Electrochem. Soc., 124, 1757, 10.1149/1.2133151
Lu, 1984, Thermal oxidation of sputtered silicon carbide thin films, J. Electrochem. Soc., 131, 1907, 10.1149/1.2115988
Opila, 1994, Oxidation kinetics of chemically vapor-deposited silicon carbide in wet oxygen, J. Am. Ceram. Soc., 77, 730, 10.1111/j.1151-2916.1994.tb05357.x
Wu, 2006, Wet oxidation behaviors of Hi-Nicalon fibers, Appl. Surf. Sci., 253, 1447, 10.1016/j.apsusc.2006.02.021
Wu, 2013, Oxidation behavior of 3D Hi-Nicalon/SiC composite exposed in wet and simulated air environments, Corros. Sci., 66, 111, 10.1016/j.corsci.2012.09.008
Yao, 2012, Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2-H2O-Ar atmospheres, Corros. Sci., 57, 182, 10.1016/j.corsci.2011.12.019
Liao, 2018, Effects of oxidation curing and sintering temperature on the microstructure formation and heat transfer performance of freestanding polymer-derived SiC films for high-power LEDs, Ceram. Int., 44, 6072, 10.1016/j.ceramint.2017.12.238
Balat, 1996, Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air, J. Eur. Ceram. Soc., 16, 55, 10.1016/0955-2219(95)00104-2
Opila, 1999, SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model, J. Am. Ceram. Soc., 82, 1826, 10.1111/j.1151-2916.1999.tb02005.x
Heuer, 1990, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation, J. Am. Ceram. Soc., 73, 2789, 10.1111/j.1151-2916.1990.tb06677.x
Laanani, 1997
Cupid, 2007, Thermodynamic calculations and phase stabilities in the Y-Si-C-O System, J. Phase Equilib. Diff., 28, 90, 10.1007/s11669-006-9014-5
Groebner, 1994
Vahlas, 1995, Thermodynamic study of the thermal degradation of SiC-based fibres: influence of SiC grain size, J. Mater. Sci. Lett., 14, 1558, 10.1007/BF00455414
Li, 2003, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97, 481, 10.1016/S0304-3991(03)00077-9
Yao, 2008, The effect of high-temperature annealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere, Fatigue Fract. Eng. Mater., 31, 777
Li, 2008, Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2-H2O-Ar atmospheres, Mater. Sci. Eng. Struct., 487, 424, 10.1016/j.msea.2007.10.035
Song, 2004, Modified Deal Grove model for the thermal oxidation of silicon carbide, J. Appl. Phys., 95, 4953, 10.1063/1.1690097
Deal, 1965, General relationship for the thermal oxidation of silicon, J. Appl. Phys., 36, 3770, 10.1063/1.1713945
Jorgensen, 1959, Oxidation of silicon carbide, J. Am. Ceram. Soc., 42, 613, 10.1111/j.1151-2916.1959.tb13582.x
Šimonka, 2016, Growth rates of dry thermal oxidation of 4H-silicon carbide, J. Appl. Phys., 120, 135705, 10.1063/1.4964688
Opila, 1999, Variation of the oxidation rate of silicon carbide with water-vapor pressure, J. Am. Ceram. Soc., 82, 625, 10.1111/j.1151-2916.1999.tb01810.x
Shimoo, 2000, Oxidation kinetics of low-oxygen silicon carbide fiber, J. Mater. Sci., 35, 3301, 10.1023/A:1004883607913
Chung, 2005, Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications, Sens. Actuat. A-Phys., 119, 599, 10.1016/j.sna.2004.10.004
Koh, 2001, Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide, Appl. Surf. Sci., 174, 210, 10.1016/S0169-4332(01)00150-7
Goto, 2015, Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry, J. Appl. Phys., 117, 095306, 10.1063/1.4914050
Luthra, 1991, Some new perspectives on oxidation of silicon carbide and silicon nitride, J. Am. Ceram. Soc., 74, 1095, 10.1111/j.1151-2916.1991.tb04348.x
Gao, 2006, Polycrystalline silicon carbide as a substrate material for reducing adhesion in MEMS, Tribol. Lett., 21, 226, 10.1007/s11249-006-9024-9
Chai, 2015, Silicon etching using only oxygen at high temperature: an alternative approach to Si micro-machining on 150 mm Si wafers, Sci. Rep., 5, 17811, 10.1038/srep17811
Tiwari, 2014, Low-temperature silicon-to-silicon anodic bonding using sodium-rich glass for MEMS applications, J. Electron. Mater., 43, 555, 10.1007/s11664-013-2844-0