Surface defect classification and detection on extruded aluminum profiles using convolutional neural networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Qamar SZ, Arif AFM, Sheikh AK (2004) Analysis of product defects in a typical aluminum extrusion facility. Mater Manuf Process 19(3):391–405
Chondronasios A, Popov I, Jordanov I (2016) Feature selection for surface defect classification of extruded aluminum profiles. Int J Adv Manuf Technol 83(1–4):33–41
Gonzalez-Adrados JR, Pereira H (1996) Classification of defects in cork planks using image analysis. Wood Sci Technol 30(3):207–215
Bishop CM (2006) Pattern recognition and machine learning. Information science and statistics. Springer
Lopes F, Pereira H, Natale FGB, De Tintrup F, Giusto DD, Vernazza G (1995) Cork pores and defects detection by morphological image analysis. Wood Science and Technology
Georgieva A, Jordanov I (2007) Image processing techniques for cork tiles classification. In: 2007 IEEE international conference on signal processing and communications, pp 576–579
Di L, Liang L-Q, Zhang W-J (2014) Defect inspection and extraction of the mobile phone cover glass based on the principal component analysis. Int J Adv Manuf Technol 73(9–12):1605–1614
Shlens J (2005) A tutorial on principal component analysis. arXiv: 1404.1100
Engelhardt M, Behne D, Grittner N, Neumann A, Reimche W, Klose C (2015) Non-destructive testing of longitudinal and charge weld seams in extruded aluminum and magnesium profiles, vol 2
Garbacz P, Giesko T, Mazurkiewicz A (2015) Inspection method of aluminium extrusion process. Arch Civil Mech Eng 15(3):631–638
Zhang X-w, Ding Y-q, Lv Y-y, Shi A-y, Liang R-y (2011) A vision inspection system for the surface defects of strongly reflected metal based on multi-class svm. Expert Syst Appl 38(5):5930–5939
Park J-K, Kwon B-K, Park J-H, Kang D-J (2016) Machine learning-based imaging system for surface defect inspection. Int J Precis Eng Manuf Green Technol 3(3):303–310
Ciora RA, Simion CM (2014) Industrial applications of image processing. Acta Universitatis Cibiniensis–Technical Series 64(1):17–21
Tzutalin (2015) Labelimg. https://github.com/tzutalin/labelImg . Git code
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 1–9
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) (* = equal contribution). Imagenet large scale visual recognition challenge IJCV. http://www.image-net.org/challenges/LSVRC/
Demant C, Streicher-Abel B, Garnica C (2013) Industrial image processing: visual quality control in manufacturing, 2 edn. Springer
Yao Y, Rosasco L, Caponnetto A (2007) On early stopping in gradient descent learning. Constr Approx 26(2):289–315
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates, Inc., pp 1097–1105
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Lecun Y (2014) Overfeat: integrated recognition, localization and detection using convolutional networks. In: International conference on learning representations (ICLR2014), CBLS
Diederik PK, Ba J (2014) Adam: a method for stochastic optimization. arXiv: 1412.6980
Ren S, He K, Girshick RB, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149
Girshick RB, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on computer vision and pattern recognition, pp 580–587
Girshick RB (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision (ICCV), pp 1440–1448
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K (2016) Speed/accuracy trade-offs for modern convolutional object detectors. arXiv: 1611.10012
Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv: 1609.04747