Surface crack modelling in an engine compressor disc
Tài liệu tham khảo
Menon, 2011, An innovative procedure for establishing lifing criteria for turbine disk bores under multiaxial states of stress, Int. J. Fatigue, 33, 1111, 10.1016/j.ijfatigue.2011.01.008
Zhu, 2013, Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys, Probab. Eng. Mech., 34, 114, 10.1016/j.probengmech.2013.08.004
Beretta, 2015, Structural integrity assessment of turbine discs in presence of potential defects: probabilistic analysis and implementation, Fatigue Fract. Eng. Mater. Struct., 38, 1042, 10.1111/ffe.12325
Corran, 2007, Lifing methods and safety criteria in aero gas turbines, Eng. Fail. Anal., 14, 518, 10.1016/j.engfailanal.2005.08.010
V.N. Shlyannikov, R.R. Yarullin, R.Z. Gizzatullin, Structural integrity prediction of turbine disk on critical zone concept basis. In: Proceedings of the Eng Struct Integr Assess, ESIA-11, Manchester. p. 1–8.
Banaszkiewicz, 2015, Multilevel approach to lifetime assessment of steam turbines, Int. J. Fatigue, 73, 39, 10.1016/j.ijfatigue.2014.10.009
Morse, 2019, A multi-fidelity modelling approach to the statistical inference of the equivalent initial flaw size distribution for multiple-site damage, Int. J. Fatigue, 120, 329, 10.1016/j.ijfatigue.2018.11.010
Shlyannikov, 2001, Fracture analysis of turbine disks and computational-experimental background of the operational decisions, Eng. Failure Anal., 8, 461, 10.1016/S1350-6307(00)00041-8
Kim, 2011, Crack evaluation of the fourth stage blade in a low-pressure steam turbine, Eng. Failure Anal., 18, 907, 10.1016/j.engfailanal.2010.11.004
Nurbanasari, 2014, Crack of a first stage blade in a steam turbine, Eng. Failure Anal., 2, 54, 10.1016/j.csefa.2014.04.002
Shlyannikov, 2014, Fatigue of steam turbine blades with damage on the leading edge, Proc. Mater. Sci., 3, 1792, 10.1016/j.mspro.2014.06.289
Shanyavsky, 1995, Fractographic analysis of fatigue crack growth in engine compressor disks of Ti-6Al-3Mo-2Cr titanium alloy, Fatigue Fract. Engng. Mater. Struct., 18, 539, 10.1111/j.1460-2695.1995.tb01416.x
Giannella, 2019, Combined static-cyclic multi-axial crack propagation in cruciform specimens, Int. J. Fatigue, 123, 296, 10.1016/j.ijfatigue.2019.02.029
Martínez-Pañeda, 2015, Numerical analysis of quasi-static fracture in functionally graded materials, Int. J. Mech. Mater. Des., 11, 405, 10.1007/s10999-014-9265-y
Branco, 2005, A review on 3D-FE adaptive remeshing techniques for crack growth modelling, Eng. Fract. Mech., 141, 170, 10.1016/j.engfracmech.2015.05.023
Portela, 1992, The dual boundary element method: effective implementation for crack problems, Int. J. Numer. Meth. Eng., 33, 1269, 10.1002/nme.1620330611
Portela, 1993, Dual boundary element incremental analysis of crack propagation, Comput. Struct., 46, 237, 10.1016/0045-7949(93)90189-K
Wen, 1998, Cracks in three dimensions: A dynamic dual boundary element analysis, Comput. Methods Appl. Mech. Eng., 167, 139, 10.1016/S0045-7825(98)00116-9
Citarella, 2005, Multiple surface crack propagation: numerical simulations and experimental tests, Fatigue Fract. Eng. Mater. Struct., 28, 135, 10.1111/j.1460-2695.2004.00842.x
Calì, 2003, Three-dimensional crack growth: numerical evaluations and experimental tests, 341
Citarella, 2014, Three-dimensional BEM and FEM submodelling in a cracked FML full scale aeronautic panel, Appl. Compos. Mater., 21, 557, 10.1007/s10443-014-9384-5
Citarella, 2013, Coupled FEM-DBEM method to assess crack growth in magnet system of Wendelstein 7-X, Fract. Struct. Integ., 26, 92
R. Citarella, G. Cricrì, M. Lepore, M. Perrella, Assessment of crack growth from a cold worked hole by coupled FEM-DBEM approach, Key Engineering Materials, vols. 577–578, Trans Tech Publications, Switzerland, 2014, pp. 669–672.
Carlone, 2015, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminium friction stir welded butt joints, Int. J. Mater. Form., 8, 591, 10.1007/s12289-014-1186-7
Citarella, 2015, Numerical–experimental crack growth analysis in AA2024-T3 FSWed butt joints, Adv. Eng. Softw., 80, 47, 10.1016/j.advengsoft.2014.09.018
Citarella, 2015, DBEM crack propagation in friction stir welded aluminum joints, Adv. Eng. Softw.
Citarella, 2016, Hybrid technique to assess the fatigue performance of multiple cracked FSW joints, Eng. Fract. Mech., 10.1016/j.engfracmech.2016.05.005
Citarella, 2009, A two-parameter model for crack growth simulation by combined FEM-DBEM approach, Adv. Eng. Softw., 40, 363, 10.1016/j.advengsoft.2008.05.001
Stepanov, 1988, Life of GTE disks with cracks, Strength Mater., 20, 550, 10.1007/BF01530872
Yarullin, 2018, Nonlinear fracture resistance parameters for cracked aircraft GTE compressor disk, Procedia Struct. Integrity, 13, 902, 10.1016/j.prostr.2018.12.170
Shlyannikov, 2016, Structural integrity assessment of turbine disk on a plastic stress intensity factor basis, Int. J. Fatigue, 92, 234, 10.1016/j.ijfatigue.2016.07.016
Shlyannikov, 2016, A plastic stress intensity factor approach to turbine disk structural integrity assessment, Frattura ed Integrità Strutturale, 37, 193, 10.3221/IGF-ESIS.37.25
ABAQUS User’s and Theory Manuals, Version 6.14, HKS Inc., 2014.
Computational Mechanics, BEASY, Ver. 10.0r18, 2018.
FRANC3D. Reference manual v6. Fracture Analysis Consultants Inc.; 2011.
Carter, 2000, Automated 3-D crack growth simulation, Int. J. Numer. Methods Engng., 47, 229, 10.1002/(SICI)1097-0207(20000110/30)47:1/3<229::AID-NME769>3.0.CO;2-2
N.V. Stepanov, I.N. Shkanov, V.V. Omelchenko, Similarity of disk stress states and damage on multiaxial hydraulic test bed to those in service operation. Information Institution of USSR, Soviet Aeronautics 2 (19852) 95-8.
Wilson, 1979, The use of the J-integral in thermal stress crack problems, Int. J. Fract., 15, 377, 10.1007/BF00033062
Citarella, 2016, FEM-DBEM approach for crack propagation in a low pressure aeroengine turbine vane segment, Theor. Appl. Fracture Mech., 86, 143, 10.1016/j.tafmec.2016.05.004
Giannella, 2017, Fatigue life assessment in lateral support element of a magnet for nuclear fusion experiment “Wendelstein 7-X”, Eng. Fract. Mech., 178, 243, 10.1016/j.engfracmech.2017.04.033
Giannella, 2017, Efficient FEM-DBEM coupled approach for crack propagation simulations, Theor. Appl. Fract. Mech., 91, 76, 10.1016/j.tafmec.2017.04.003
Citarella, 2016, Hybrid technique to assess the fatigue performance of multiple cracked FSW joints, Eng. Fract. Mech., 132, 38, 10.1016/j.engfracmech.2016.05.005
Sih, 1974, Strain energy density factor applied to mixed mode crack problems, Int. J. Fract., 10, 305, 10.1007/BF00035493
Sih, 1974, A fracture criterion for three-dimensional crack prob-lems, Eng. Fract. Mech., 6, 699, 10.1016/0013-7944(74)90068-X
Citarella, 2010, Comparison of DBEM and FEM crack path predictions in a notched shaft under torsion, Eng. Fract. Mech., 77, 1730, 10.1016/j.engfracmech.2010.03.012
P.A. Wawrzynek, B. Carter, L. Banks-Sills, The M-integral for computing stress intensity factors in generally anisotropic materials, NASA/CR-2005-214006, 2005.
Erdogan, 1963, On the extension of plates under plane loading and transverse shear, J. Basic Engng., 85D, 519, 10.1115/1.3656897
Pettit, 2013, Next generation 3D mixed mode fracture propagation theory including HCF–LCF interaction, Eng. Fract. Mech., 102, 1, 10.1016/j.engfracmech.2013.02.005
A.A. Shanyavsky, Tolerance fatigue failures of aircraft components. Synergetics in engineering applications, in: Monography, Ufa, 2003, pp. 803.
Chambers, 1991, Mixed mode fatigue crack growth at 550°C under plane stress conditions in jethete M152, Eng. Fract. Mech., 39, 603, 10.1016/0013-7944(91)90072-9
Shi, 2006, Determination of interface fracture toughness of adhesive joint subjected to mixed-mode loading using finite el-ement method, Int. J. Adhesion Adhes., 26, 249, 10.1016/j.ijadhadh.2005.02.007