Surface Plasmon Coupling Effect of Gold Nanoparticles with Different Shape and Size on Conventional Surface Plasmon Resonance Signal
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B 121:158–177
Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526
Besselink GAJ, Kooyman RPH, van Os PJHJ, Engbers GHM, Schasfoort RBM (2004) Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal Biochem 333:165–173
Gomes P, Andreu D (2002) Direct kinetic assay of interactions between small peptides and immobilized antibodies using a surface plasmon resonance biosensor. J Immunol Methods 259:217–230
Adamczyk M, Moore JA, Yu Z (2000) Application of surface plasmon resonance toward studies of low-molecular weight antigen–antibody binding interactions. Methods 20:319–328
Frostell-Karlsson A, Remaeus A, Roos H, Andersson K, Borg P, Hämäläinen M, Karlsson R (2000) Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J Med Chem 43:1986–1992
Strandh M, Persson B, Roos H, Ohlson S (1998) Studies of interactions with weak affinities and low-molecular-weight compounds using surface plasmon resonance technology. J Mol Recognit 11:188–190
Huang H, Ran P, Liu Z (2008) Signal enhancement of surface plasmon resonance-based immunoassays for the allergen detection. Sens Actuators B Chem 131:417–423
Cao C, Sim SJ (2007) Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: a femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosens Bioelectron 22:1874–1880
Takae S, Akiyama Y, Yamasaki Y, Nagasaki Y, Kataoka K (2007) Colloidal Au replacement assay for highly sensitive quantification of low molecular weight analytes by surface plasmon resonance. Bioconjug Chem 18(4):1241–1245
Hutter E, Pileni MP (2003) Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B 107:6497–6499
Wang Q, Yang X, Wang K (2007) Enhanced surface plasmon resonance for detection of DNA hybridization based on layer-by-layer assembly films. Sens Actuators B 123:227–232
Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192
Huang X, Tu H, Zhu D, Du D, Zhang A (2009) A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate–acetylcholinesterase interaction by surface plasmon resonance. Talanta 78(3):1036–1042
He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077
Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou F (2006) Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem 354:220–228
Lyon LA, Pen DJ, Natan MJ (1999) Surface plasmon resonance of Au colloid-modified Au films: particle size dependence. J Phys Chem B 103:5826–5831
Zhao J, Pinchuk AO, Mahon JMM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720
Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Duyne RPV (2007) Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J Am Chem Soc 129(24):7647–7656
Haes AJ, Zou S, Zhao J, Schatz GC, Duyne RPV (2006) Localized surface plasmon resonance spectroscopy near molecular resonances. J Am Chem Soc 128:10905–10914
Zhao J, Das A, Schatz GC, Sligar SG, Duyne RPV (2008) Resonance localized surface plasmon spectroscopy: sensing substrate and inhibitor binding to cytochrome P450. J Phys Chem C 112:13084–13088
Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8(8):2245–2252
Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309–1315
Yang T, Crozier KB (2008) Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model. Opt Express 16:13070–13079
Tejeira FL, Rodrigo SG, Moreno LM, Vidal FJG, Devaux E, Dintinger J, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2008) Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. New J Phys 10:033035–033053
Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648
Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods; role of the size and nature of the seed. Chem Mater 16(19):3633–3640
Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786
Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237
Kim D, Heo J, Kim M, Lee YW, Han SW (2009) Size-controlled synthesis of monodisperse gold nanooctahedrons and their surface-enhanced Raman scattering properties. Chem Phys Lett 468:245–248
Tsung CK, Kou X, Shi Q, Zhang J, Yeung MH, Wang J, Stucky GD (2006) Selective shortening of single-crystalline gold nanorods by mild oxidation. J Am Chem Soc 128:5352–5353
Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870
Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV (2004) Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 108(35):13066–13068
Homola J (2006) Surface plasmon resonance (SPR) biosensors and their applications in food safety and security. In: Janz S, Čtyroký J, Tanev S (eds) Frontiers in planar lightwave circuit technology: design, simulation, and fabrication. Springer, Berlin, pp 101–118
Jain PK, Eustis S, El-Sayed MA, Plasmon Coupling in Nanorod Assemblies (2006) Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253
Li X, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. J Phys Chem B 110(32):15755–15762
Jun T, Hua LY, Sheng ZR, Qun LK, Guo XZ, Feng LZ, Li LS, Pei W, Hai M (2008) Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods. Chinese Phys Lett 25:4459–4462
Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17(6):1325–1330
Cheng SF, Chau LK (2003) Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal Chem 75(1):16–21
Sharpe JC, Mitchell JS, Lin L, Sedoglavich N, Blaikie RJ (2008) Gold nanohole array substrates as immunobiosensors. Anal Chem 80:2244–2249
Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B 54:16–24