Vật Liệu Màng Polyethersulfone Được Kỹ Thuật Bề Mặt Sử Dụng Poly(N-Isopropyl Acrylamide) Đáp Ứng Nhiệt Tính Với Tính Chất Chống Bám Bẩn Để Ứng Dụng Xử Lý Nước

Homa Ghasemi1, Nidal Abu-Zahra1, Umair Baig2, Abdul Waheed2, Isam H. Aljundi2,3
1Department of Materials Science & Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, USA
2Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia
3Chemical Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia

Tóm tắt

Trong nghiên cứu này, chúng tôi sử dụng hệ thống khởi xướng hóa học redox để graft poly(N-isopropyl acrylamide) (PNIPAM) lên bề mặt màng polyethersulfone (PES) với năng suất grafting đạt khoảng 25%, chưa từng được báo cáo ở nơi nào khác. Việc sửa đổi này đã cải thiện đáng kể khả năng chống bám bẩn của màng PES. Thêm vào đó, nghiên cứu đã đánh giá ảnh hưởng của các mức độ năng suất grafting khác nhau của PNIPAM (5%, 15% và 25%) đến hiệu suất của màng. Kết quả cho thấy rằng các màng được graft thể hiện tính ưa nước tăng lên và phản ứng linh hoạt với sự thay đổi nhiệt độ đầu vào, xác nhận tính chất phản ứng nhiệt của chúng. Góc tiếp xúc lùi cho màng có năng suất grafting 25% PNIPAM thấp đáng kể (~ 10°) ở nhiệt độ dưới 33 °C nhưng tăng lên 37° khi nhiệt độ vượt quá 40 °C, cho thấy sự thay đổi phụ thuộc vào nhiệt độ trong độ ướt bề mặt của các màng PES graft PNIPAM. Các màng có năng suất grafting 15% và 25% thể hiện khả năng chống bám bẩn tốt hơn với protein BSA, với hiệu suất làm sạch và tỷ lệ phục hồi lưu lượng vượt quá 97%. Hơn nữa, các màng PES graft PNIPAM cũng cho tỷ lệ loại bỏ dầu xuất sắc vượt quá 98%. Những phát hiện này chứng tỏ rằng các màng PES graft PNIPAM có tiềm năng hứa hẹn cho các mục đích xử lý nước và làm nổi bật hiệu quả của việc graft polymer như một phương pháp sửa đổi màng.

Từ khóa

#graft polymer; poly(N-isopropyl acrylamide); polyethersulfone; màng thẩm thấu; chống bám bẩn; xử lý nước; tính ưa nước; phản ứng nhiệt

Tài liệu tham khảo

Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S (May 2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267. https://doi.org/10.1016/j.cej.2013.02.130 Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW (2019) Membrane-based separation for oily wastewater: A practical perspective, Water Res, vol. 156, pp. 347–365, Jun. https://doi.org/10.1016/j.watres.2019.03.021 Li X, Mo Y, Qing W, Shao S, Tang CY, Li J (Dec. 2019) Membrane-based technologies for lithium recovery from water lithium resources: a review. J Membr Sci 591:117317. https://doi.org/10.1016/j.memsci.2019.117317 Ahmad NNR, Ang WL, Teow YH, Mohammad AW, Hilal N (2022) Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review, J. Water Process Eng, vol. 45, p. 102478, Feb. https://doi.org/10.1016/j.jwpe.2021.102478 Bolong N, Ismail AF, Salim MR, Rana D, Matsuura T (2009) Development and characterization of novel charged surface modification macromolecule to polyethersulfone hollow fiber membrane with polyvinylpyrrolidone and water, J. Membr. Sci, vol. 331, no. 1, pp. 40–49, Apr. https://doi.org/10.1016/j.memsci.2009.01.008 Bódalo A, Gómez JL, Gómez E, León G, Tejera M (Aug. 2004) Sulfonated polyethersulfone membranes in the desalination of aqueous solutions. Desalination 168:277–282. https://doi.org/10.1016/j.desal.2004.07.009 Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T (Jun. 2004) Manufacturing conditions of surface-modified membranes: effects on ultrafiltration performance. Sep Purif Technol 37(1):51–67. https://doi.org/10.1016/j.seppur.2003.07.003 Poornima S et al (2022) Sep., Emerging nanotechnology based advanced techniques for wastewater treatment, Chemosphere, vol. 303, p. 135050, https://doi.org/10.1016/j.chemosphere.2022.135050 Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (Feb. 2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107. https://doi.org/10.1016/j.desal.2011.10.039 Wang H, Yang L, Zhao X, Yu T, Du Q (Apr. 2009) Improvement of Hydrophilicity and blood compatibility on Polyethersulfone membrane by blending Sulfonated Polyethersulfone. Chin J Chem Eng 17(2):324–329. https://doi.org/10.1016/S1004-9541(08)60211-6 Shi Q, Su Y, Zhu S, Li C, Zhao Y, Jiang Z (2007) A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane, J. Membr. Sci, vol. 303, no. 1, pp. 204–212, Oct. https://doi.org/10.1016/j.memsci.2007.07.009 Shi X, Tal G, Hankins NP, Gitis V (Apr. 2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Process Eng 1:121–138. https://doi.org/10.1016/j.jwpe.2014.04.003 Tanvidkar P, Nayak B, Kuncharam BVR (2023) Study of dual Filler Mixed Matrix Membranes with acid-functionalized MWCNTs and Metal-Organic Framework (UiO-66-NH2) in Cellulose Acetate for CO2 Separation, J. Polym. Environ, vol. 31, no. 8, pp. 3404–3417, Aug. https://doi.org/10.1007/s10924-023-02827-9 Blanco JF, Nguyen QT, Schaetzel P (May 2001) Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo. J Membr Sci 186(2):267–279. https://doi.org/10.1016/S0376-7388(01)00331-3 Jiang S, Li Y, Ladewig BP (Oct. 2017) A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ 595:567–583. https://doi.org/10.1016/j.scitotenv.2017.03.235 Peters CD, Rantissi T, Gitis V, Hankins NP (2021) Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning - A review, J. Water Process Eng, vol. 44, p. 102374, Dec. https://doi.org/10.1016/j.jwpe.2021.102374 Mohamat R et al (2023) Aug., Incorporation of Different Polymeric Additives for Polyvinylidene Fluoride Membrane Fabrication and Its Performance on Methylene Blue Rejection and Antifouling Improvement, J. Polym. Environ, vol. 31, no. 8, pp. 3466–3479, https://doi.org/10.1007/s10924-023-02774-5 Adib H, Raisi A (2020) Surface modification of a PES membrane by corona air plasma-assisted grafting of HB-PEG for separation of oil-in-water emulsions. RSC Adv 10(29):17143–17153. https://doi.org/10.1039/D0RA02032J Iwa T, Kumazawa H, Bae S-Y (2004) Gas permeabilities of NH3-plasma-treated polyethersulfone membranes. J Appl Polym Sci 94(2):758–762. https://doi.org/10.1002/app.20961 Suhaimi A et al (Dec. 2021) Superhydrophilic organosilicon plasma modification on PES membrane for organic dyes filtration. J Water Process Eng 44:102352. https://doi.org/10.1016/j.jwpe.2021.102352 Khezraqa H, Etemadi H, Salami-Kalajahi M (2023) Investigating the Effect of Polyamidoamine Generation 2 (PAMAM-G2) Polymeric Nanostructures Dendrimer on the Performance of Polycarbonate Thin Film Nanocomposite Membranes for Water Treatment, J. Polym. Environ, vol. 31, no. 8, pp. 3604–3618, Aug. https://doi.org/10.1007/s10924-023-02830-0 Yu S, Liu X, Liu J, Wu D, Liu M, Gao C (Jan. 2011) Surface modification of thin-film composite polyamide reverse osmosis membranes with thermo-responsive polymer (TRP) for improved fouling resistance and cleaning efficiency. Sep Purif Technol 76(3):283–291. https://doi.org/10.1016/j.seppur.2010.10.017 You M, Wang P, Xu M, Yuan T, Meng J (Oct. 2016) Fouling resistance and cleaning efficiency of stimuli-responsive reverse osmosis (RO) membranes. Polymer 103:457–467. https://doi.org/10.1016/j.polymer.2016.03.065 Katibi KK, Md Yunos KF, Man HC, Aris AZ, Nor MZM, Azis RS (2023) Influence of Functionalized Hematite Nanoparticles as a Reinforcer for Composite PVDF-PEG Membrane for BPF Rejection: Permeability and Anti-fouling Studies, J. Polym. Environ, vol. 31, no. 2, pp. 768–790, Feb. https://doi.org/10.1007/s10924-022-02605-z Maeda T, Akasaki Y, Yamamoto K, Aoyagi T (2009) Stimuli-Responsive Coacervate Induced in Binary Functionalized Poly(N-isopropylacrylamide) Aqueous System and Novel Method for Preparing Semi-IPN Microgel Using the Coacervate, Langmuir, vol. 25, no. 16, pp. 9510–9517, Aug. https://doi.org/10.1021/la9007735 Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE (Jan. 2002) Stimulus-responsive ‘Smart’ hydrogels as Novel Drug Delivery systems. Drug Dev Ind Pharm 28(8):957–974. https://doi.org/10.1081/DDC-120006428 A Survey of Structure – Property Relationships of Surfaces that Resist the Adsorption of Protein | Langmuir. Accessed: Feb. 09, 2023. [Online]. Available: https://pubs.acs.org/doi/full/https://doi.org/10.1021/la010384m Pourziad S, Omidkhah MR, Abdollahi M (2020) Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment, J. Ind. Eng. Chem, vol. 83, pp. 401–408, Mar. https://doi.org/10.1016/j.jiec.2019.12.013 Wei B et al (May 2022) Thermo-modulated nanofibrous skin covered Janus Membranes for Efficient Oil/Water separation. Colloids Surf Physicochem Eng Asp 641:127935. https://doi.org/10.1016/j.colsurfa.2021.127935 Mao H et al (Jan. 2022) Anti-fouling and easy-cleaning PVDF membranes blended with hydrophilic thermo-responsive nanofibers for efficient biological wastewater treatment. Sep Purif Technol 281:119881. https://doi.org/10.1016/j.seppur.2021.119881 Li D, Niu X, Yang S, Chen Y, Ran F (2018) Thermo-responsive polysulfone membranes with good anti-fouling property modified by grafting random copolymers via surface-initiated eATRP, Sep. Purif. Technol, vol. 206, pp. 166–176, Nov. https://doi.org/10.1016/j.seppur.2018.05.046 Wang X, McCord MG (2007) Grafting of poly(N-isopropylacrylamide) onto nylon and polystyrene surfaces by atmospheric plasma treatment followed with free radical graft copolymerization. J Appl Polym Sci 104(6):3614–3621. https://doi.org/10.1002/app.26081 Li Y, Chu L-Y, Zhu J-H, Wang H-D, Xia S-L, Chen W-M (May 2004) Thermoresponsive gating characteristics of poly(N-isopropylacrylamide)-Grafted porous poly(vinylidene fluoride) membranes. Ind Eng Chem Res 43(11):2643–2649. https://doi.org/10.1021/ie034334j Gohari B, Abu-Zahra N (2018) Polyethersulfone Membranes Prepared with 3-Aminopropyltriethoxysilane Modified Alumina Nanoparticles for Cu(II) Removal from Water, ACS Omega, vol. 3, no. 8, pp. 10154–10162, Aug. https://doi.org/10.1021/acsomega.8b01024 Reddy AVR et al (Nov. 2005) Fouling resistant membranes in desalination and water recovery. Desalination 183(1):301–306. https://doi.org/10.1016/j.desal.2005.04.027 Belfer S, Fainchtain R, Purinson Y, Kedem O (2000) Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled, J. Membr. Sci, vol. 172, no. 1, pp. 113–124, Jul. https://doi.org/10.1016/S0376-7388(00)00316-1 Nasr M, Alfryyan N, Ali SS, El-Salam HMA, Shaban M (2022) Preparation, characterization, and performance of PES/GO woven mixed matrix nanocomposite forward osmosis membrane for water desalination. RSC Adv 12(39):25654–25668. https://doi.org/10.1039/D2RA03832C Peyravi M, Rahimpour A, Jahanshahi M, Javadi A, Shockravi A (2012) Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer, Microporous Mesoporous Mater, vol. 160, pp. 114–125, Sep. https://doi.org/10.1016/j.micromeso.2012.04.036 Hegab HM et al (Dec. 2022) Designing of amino silica covalently functionalized carboxylic multi-wall carbon nanotubes-based polyethersulfone membranes for enhancing oily wastewater treatment. J Environ Chem Eng 10(6):108667. https://doi.org/10.1016/j.jece.2022.108667 Preparation of stable multiple emulsions using food-grade emulsifiers: evaluating the effects of emulsifier concentration, W/O phase ratio, and emulsification process | SpringerLink. Accessed: Feb. 08, 2023. [Online]. Available: https://link.springer.com/article/10.1007/s42452-020-03879-5 Gating Characteristics of Thermo-Responsive Membranes with Grafted Linear and Crosslinked Poly(N‐isopropylacrylamide) Gates - Chen – 2009 - Chemical Engineering & Technology - Wiley Online Library. Accessed: Mar. 05, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ceat.200800354?casa_token=ujt09lEZn6YAAAAA:Vfm-AxjqGaDYnwdhvlKwFdJpkojwX1-utdXUfJSYw7Cdpl7shkFaFmQyuBacqoc-NxuR1F9YIPq08kI Saad A, Mills R, Wan H, Ormsbee L, Bhattacharyya D (2020) Thermoresponsive PNIPAm–PMMA-Functionalized PVDF Membranes with Reactive Fe–Pd Nanoparticles for PCB Degradation, Ind. Eng. Chem. Res, vol. 59, no. 38, pp. 16614–16625, Sep. https://doi.org/10.1021/acs.iecr.0c03260 He Y et al (2019) Preparation and characterization of a novel positively charged composite hollow fiber nanofiltration membrane based on chitosan lactate. RSC Adv 9(8):4361–4369. https://doi.org/10.1039/C8RA09855G Chen W, He H, Zhu H, Cheng M, Li Y, Wang S (2018) Thermo-Responsive Cellulose-Based Material with Switchable Wettability for Controllable Oil/Water Separation, Polymers, vol. 10, no. 6, Art. no. 6, Jun. https://doi.org/10.3390/polym10060592 Zhu S, Shi M, Zhao S, Wang Z, Wang J, Wang S (2015) Preparation and characterization of a polyethersulfone/polyaniline nanocomposite membrane for ultrafiltration and as a substrate for a gas separation membrane. RSC Adv 5(34):27211–27223. https://doi.org/10.1039/C4RA16951D Śliwa T, Jarzębski M, Gapiński J, Grzeszkowiak M, Kleshchanok D (May 2014) Stimuli-Responsive PNIPAM based copolymers: modeling and light scattering investigations. Acta Phys Pol A 125(5):1236–1239. https://doi.org/10.12693/APhysPolA.125.1236 Wang G, Xie R, Ju X-J, Chu L-Y (2012) Thermo-Responsive Polyethersulfone Composite membranes blended with poly(N-isopropylacrylamide) Nanogels. Chem Eng Technol 35(11):2015–2022. https://doi.org/10.1002/ceat.201200235 Dan Grossman A, Yang Y, Yogev U, Calero Camarena D, Oron G, Bernstein R (2019) Effect of ultrafiltration membrane material on fouling dynamics in a submerged anaerobic membrane bioreactor treating domestic wastewater. Environ Sci Water Res Technol 5(6):1145–1156. https://doi.org/10.1039/C9EW00205G Hussein Al-Timimi DA, Alsalhy QF, AbdulRazak AA, Drioli E (Oct. 2022) Novel polyether sulfone/polyethylenimine grafted nano-silica nanocomposite membranes: Interaction mechanism and ultrafiltration performance. J Membr Sci 659:120784. https://doi.org/10.1016/j.memsci.2022.120784 Rahimpour A, Madaeni SS, Ghorbani S, Shockravi A, Mansourpanah Y (Jan. 2010) The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane. Appl Surf Sci 256(6):1825–1831. https://doi.org/10.1016/j.apsusc.2009.10.014 Sun F et al (Nov. 2020) Facile fabrication of hydrophilic-underwater superoleophobic poly(N-isopropylacrylamide) coated PP/LPET nonwoven fabrics for highly efficient oil/water separation. Prog Org Coat 148:105780. https://doi.org/10.1016/j.porgcoat.2020.105780 Xu D et al (Feb. 2022) Mechanistic insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration membranes. Environ Sci Technol 56(3):1927–1937. https://doi.org/10.1021/acs.est.1c06156 Clodt JI et al (2013) Double stimuli-responsive isoporous membranes via Post-modification of pH-Sensitive self-assembled diblock copolymer membranes. Adv Funct Mater 23(6):731–738. https://doi.org/10.1002/adfm.201202015 Liang et al (2000) Oct., Surfaces with Reversible Hydrophilic/Hydrophobic Characteristics on Cross-linked Poly(N-isopropylacrylamide) Hydrogels, Langmuir, vol. 16, no. 21, pp. 8016–8023, https://doi.org/10.1021/la0010929 Xiao Q et al (Aug. 2022) PNIPAm hydrogel composite membrane for high-throughput adsorption of biological macromolecules. Sep Purif Technol 294:121224. https://doi.org/10.1016/j.seppur.2022.121224 Payerl C et al (May 2017) Nonspecific protein adsorption on cationically modified Lyocell fibers monitored by Zeta potential measurements. Carbohydr Polym 164:49–56. https://doi.org/10.1016/j.carbpol.2017.01.088 Arahman N et al (2019) Jan., Improving Water Permeability of Hydrophilic PVDF Membrane Prepared via Blending with Organic and Inorganic Additives for Humic Acid Separation, Molecules, vol. 24, no. 22, Art. no. 22, https://doi.org/10.3390/molecules24224099 Zhang Q, Ding W, Zhang H, Zhang K, Wang Z, Liu J (2021) Enhanced performance of porous forward osmosis (FO) membrane in the treatment of oily wastewater containing HPAM by the incorporation of palygorskite, RSC Adv, vol. 11, no. 36, pp. 22439–22449, Jun. https://doi.org/10.1039/D1RA02858H Miao A, Wei M, Xu F, Wang Y (Jun. 2020) Influence of membrane hydrophilicity on water permeability: an experimental study bridging simulations. J Membr Sci 604:118087. https://doi.org/10.1016/j.memsci.2020.118087 Mocan M, Wahdat H, van der Kooij HM, de Vos WM, Kamperman M (Feb. 2018) Systematic variation of membrane casting parameters to control the structure of thermo-responsive isoporous membranes. J Membr Sci 548:502–509. https://doi.org/10.1016/j.memsci.2017.11.047 Salehi Shahrabi S, Mortaheb HR, Barzin J, Ehsani MR (Feb. 2012) Pervaporative performance of a PDMS/blended PES composite membrane for removal of toluene from water. Desalination 287:281–289. https://doi.org/10.1016/j.desal.2011.08.062 Liu H et al (2018) Engineering of thermo-/pH-responsive membranes with enhanced gating coefficients, reversible behaviors and self-cleaning performance through acetic acid boosted microgel assembly. J Mater Chem A 6(25):11874–11883. https://doi.org/10.1039/C8TA04010A Cao R et al (2020) Mar., Photo- and Thermosensitive Polymer Membrane with a Tunable Microstructure Doped with Graphene Oxide Nanosheets and Poly(N-isopropylacrylamide) for the Application of Light-Cleaning, ACS Appl. Mater. Interfaces, vol. 12, no. 12, pp. 14352–14364, https://doi.org/10.1021/acsami.0c00410 Qasim M, Darwish NN, Mhiyo S, Darwish NA, Hilal N (Oct. 2018) The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination 443:143–164. https://doi.org/10.1016/j.desal.2018.04.007 Zhai W et al (Jul. 2022) Stable fouling resistance of polyethylene (PE) separator membrane via oxygen plasma plus zwitterion grafting. Sep Purif Technol 293:121091. https://doi.org/10.1016/j.seppur.2022.121091 Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation | ACS Applied Materials & Interfaces. Accessed: Feb. 09, 2023. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/acsami.9b01293?casa_token=-hRgfGa_ZocAAAAA%3A7_EShZtaucy2F70wI5ZvO9PkZh7zpN7OLPLMkT3Lzs7bsKnRBUPoU2T5ibyq8n1vEi-ILISpcvoGFFE Huisman IH, Prádanos P, Hernández A (2000) The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration, J. Membr. Sci, vol. 179, no. 1, pp. 79–90, Nov. https://doi.org/10.1016/S0376-7388(00)00501-9 Vanangamudi A, Dumée LF, Ligneris ED, Duke M, Yang X (2019) Thermo-responsive nanofibrous composite membranes for efficient self-cleaning of protein foulants, J. Membr. Sci, vol. 574, pp. 309–317, Mar. https://doi.org/10.1016/j.memsci.2018.12.086 Guo Z-Y, Yuan X-S, Geng H-Z, Wang L-D, Jing L-C, Gu Z-Z (2018) High conductive PPy–CNT surface-modified PES membrane with anti-fouling property, Appl. Nanosci, vol. 8, no. 6, pp. 1597–1606, Aug. https://doi.org/10.1007/s13204-018-0826-5 Ziemann E, Qin J, Coves T, Bernstein R (Apr. 2023) Effect of branching in zwitterionic polymer brushes grafted from PES UF membrane surfaces via AGET-ATR(c)P. J Membr Sci 672:121422. https://doi.org/10.1016/j.memsci.2023.121422 Zhang S et al (Jun. 2020) Grafting copolymer of thermo-responsive and polysaccharide chains for surface modification of high performance membrane. Sep Purif Technol 240:116585. https://doi.org/10.1016/j.seppur.2020.116585 Salimi P, Aroujalian A, Iranshahi D (Mar. 2021) Graft copolymerization of zwitterionic monomer on the polyethersulfone membrane surface by corona air plasma for separation of oily wastewater. Sep Purif Technol 258:117939. https://doi.org/10.1016/j.seppur.2020.117939 Lou D, Hou Z, Yang H, Liu Y, Wang T (2020) Antifouling Membranes Prepared from Polyethersulfone Grafted with Poly(ethylene glycol) Methacrylate by Radiation-Induced Copolymerization in Homogeneous Solution, ACS Omega, vol. 5, no. 42, pp. 27094–27102, Oct. https://doi.org/10.1021/acsomega.0c02439