Surface Chemistry of All Inorganic Halide Perovskite Nanocrystals: Passivation Mechanism and Stability

Advanced Materials Interfaces - Tập 5 Số 8 - 2018
Dandan Yang1, Xiaoming Li1, Haibo Zeng1
1MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Tóm tắt

AbstractAll inorganic halide perovskite (IHP) nanocrystals (NCs) have emerged as a new class of optoelectronic materials for various applications. Surface ligands as surface passivators are essential components of nucleation and growth processes, photoluminescence quantum yields (PL QY), stability, and photoelectric applications. In this review, the relationship of perovskite structure modified is outlined by surface ligand and some properties on account of the ion structure features. This review specifically focuses on the roles of surface ligands in the construction of IHP NCs with fewer defects, higher PL QY, and better stability. Generally, ligands binding to the surface of IHP NCs can form passivation layer, which are beneficial to not only the improvement of PL QY by filling the Br or Pb2+ vacancy but also the enhancement of stability. The surface passivation mechanisms are attributed to the [Br⋯HN+] hydrogen‐bonding, chelation, and dative covalent bond interactions. Furthermore, degradation mechanisms assigned to the hydration, ion migration, and dissociation are discussed. The equilibrium problem of purifying and QY and possible reasons are also addressed, which are believed to be solved in the near future with the help of coordination chemistry and surface engineering. Finally, a brief outlook including challenges and possible development is provided.

Từ khóa


Tài liệu tham khảo

10.1021/nl5048779

10.1021/acs.jpclett.7b01733

10.1039/C6TC05578H

10.1021/jacs.7b04000

10.1002/adom.201700023

10.1002/adma.201502567

10.1021/acsami.7b00811

10.1002/smll.201700364

10.1021/acsnano.6b08194

10.1002/adma.201503573

10.1002/adom.201600788

Chen J., 2017, Adv Mater., 2, 1700132

10.1002/adma.201701185

10.1002/aenm.201502317

10.1002/adma.201501978

10.1021/acs.jpcc.7b03771

10.1021/acsnano.7b05442

10.1021/jacs.7b02817

10.1021/ja016711u

10.1021/acsami.7b03445

10.1002/adma.201203079

10.1002/adma.200901920

10.1038/ncomms15198

10.1021/jacs.6b05608

10.1021/jz502615e

10.1038/nmat4526

10.1038/nmat4554

10.1021/acsenergylett.6b00402

10.1021/acs.chemmater.6b01329

10.1002/adfm.201600109

10.1039/C7TC03774K

10.1021/acs.jpclett.7b00431

10.1021/acs.inorgchem.6b02763

10.1126/science.1252727

10.1002/anie.201605909

10.1021/acs.inorgchem.7b00279

10.1021/acs.chemmater.6b04789

10.1021/ja4086758

10.1021/acs.nanolett.5b04981

10.1021/acsnano.5b06295

10.1021/acs.chemmater.6b04841

10.1002/adfm.201701121

10.1039/C5CC09762B

10.1021/acs.jpclett.7b00993

10.1039/C6CC05877A

10.1021/jacs.5b05404

10.1021/jacs.6b05901

10.1021/acs.jpclett.6b02344

10.1021/jacs.6b03166

10.1021/acs.chemmater.6b04848

10.1002/cnma.201700006

10.1038/srep37693

10.1021/acsnano.5b08193

10.1021/acsnano.6b03863

10.1002/anie.201602236

10.1002/adfm.201604580

10.1021/jacs.6b08900

10.1002/adfm.201604018

10.1002/anie.201406836

10.1038/nenergy.2017.102

10.1021/acsenergylett.7b00547

10.1021/acs.jpclett.6b02800

10.1021/ja804414f

10.1002/anie.201500965

10.1002/adma.200700035

10.1021/acs.chemmater.7b00692

10.1039/C6CC01500J

10.1021/acsenergylett.6b00595

10.1039/C6DT02410F

10.1021/acs.jpclett.7b02192

10.1021/nn5036476

10.1021/jacs.7b10647

10.1021/acsnano.7b04683

10.1002/anie.201704739

10.1021/acsnano.7b06294

10.1021/nn506864k

10.1063/1.4943638

10.1039/C7TC03733C

10.1021/acsami.6b14423

10.1039/C6CP08824D

10.1021/acs.jpclett.5b02460

10.1021/acs.langmuir.7b02963

10.1039/C7CC01152K

10.1021/acsami.6b02529

10.1038/s41598-017-15230-x

10.1021/acsami.6b09443

10.1002/adma.201603081

10.1021/acs.chemmater.7b02669

10.1002/adma.201202942

10.1002/adfm.201704371

10.1039/C7TC01174A

10.1002/anie.201703703

10.1039/C6NR08892A

10.1039/C6SC01758D

10.1002/adfm.201704288

10.1039/C7NR01287J

10.1021/jacs.7b11003

10.1002/smll.201604085

10.1021/jacs.5b13470

10.1016/j.matlet.2017.04.046

10.1021/acs.chemmater.7b02089

10.1007/s10853-017-1890-z

10.1002/smll.201603996

10.1002/adma.201607022

10.1021/acs.jpclett.6b02073

10.1002/adfm.201700338

10.1002/adma.201600784

10.1002/adma.201603885

10.1021/acsami.7b17166

10.1021/acsami.7b03382

10.1002/anie.201706860

10.1021/acsnano.7b07856

10.1002/adma.201601024