Sur le théorème de Fermat sur $${\mathbb Q}\big (\sqrt{5}\big )$$

Springer Science and Business Media LLC - Tập 39 - Trang 49-59 - 2015
Alain Kraus1
1Équipe de Théorie des Nombres, Institut de Mathématiques de Jussieu, Université de Paris VI, Paris, France

Tóm tắt

Let p be an odd prime number. Using modular arguments, we give an easy testable condition which allows often to prove Fermat’s Last Theorem over the quadratic field $${\mathbb Q}\bigl (\sqrt{5}\bigr )$$ for the exponent p. It is related to Wendt’s resultant of the polynomials $$X^n-1$$ and $$(X+1)^n-1$$ . We deduce Fermat’s Last Theorem over this field for p in case one has $$5\le p<10^7$$ , and we obtain results analogous to Sophie Germain type criteria.

Tài liệu tham khảo

Batut, C., Bernardi, D., Belabas, K., Cohen, H., Olivier, M.: PARI-GP, version 2.3.3. Université de Bordeaux I (2008) Cohen, H.: Advanced Topics in Computational Number Theory. Springer, New York (2000) Freitas, N., Siksek, S.: The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields, p 21. arXiv:1307.3162v3. à paraître dans la revue Compositio Mathematica (2014) Freitas, N., Siksek, S.: Fermat’s Last Theorem over some small real quadratic fields, p 15. arXiv:1407.4435v1. à paraître dans la revue Algebra and Number Theory (2014) Freitas, N., Siksek, S., Le Hung: Elliptic curves over real quadratic fields are modular, p. 38. arXiv:1310.7088v4. à paraître dans la revue Inventiones Mathematicae (2014) Gross, H., Rohrlich, D.E.: Some results on the Mordell–Weil group of the Jacobian of the Fermat curve. Invent. Math. 44, 201–224 (1978) Hao, F.H., Parry, C.J.: The Fermat equation over quadratic fields. J. Number Theory 19, 115–130 (1984) Jarvis, F., Meekin, P.: The Fermat equation over \({\mathbb{Q}}\bigl (\sqrt{2}\bigr )\). J. Number Theory 109, 182–196 (2004) Kamienny, S., Najman, F.: Torsion groups of elliptic curves over quadratic fields. Acta Arith. 152, 291–305 (2012) Kraus, A.: Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive. Manuscripta Math. 69, 353–385 (1990) Kraus, A.: Courbes elliptiques semi-stables sur les corps de nombres. Int. J. Number Theory 3, 611–633 (2007) LMFDB: The \(L\)-functions and modular forms database (2014) http://www.lmfdb.org McCallum, W., Tzermias, P.: On Shafarevich–Tate groups and the arithmetic of Fermat curves. London Mathematical Society Lecture Note Series 303, pp. 203–226. Cambridge University Press (2003) Papadopoulos, I.: Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle \(2\) et \(3\). J. Number Theory 44, 119–152 (1993) Ribenboim, P.: Fermat’s Last Theorem for Amateurs. Springer, New York (1999) Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972) Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, New York (2009) Stein, W., et al.: A database of elliptic curves over \({\mathbb{Q}}\bigl (\sqrt{5}\bigr )\)—first report, p. 16. arXiv:1202.6612v2, p. 17. voir Some Relevant Tables, table.pdf (2012) Tzermias, P.: Low-degree points on Hurwitz–Klein curves. Trans. Am. Math. Soc. 356, 939–951 (2003) Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995)