Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer
Tài liệu tham khảo
Goodenough, 2018, How we made the Li-ion rechargeable battery, Nat. Electron., 1, 204, 10.1038/s41928-018-0048-6
Goodenough, 2011, Challenges for rechargeable batteries, J. Power Sources, 196, 6688, 10.1016/j.jpowsour.2010.11.074
Steingart, 2018, V. Comment on "Alternative strategy for a safe rechargeable battery" by M. H. Braga, N. S. Grundish, A. J. Murchison and J. B. Goodenough, Energy Environ. Sci., 11, 221, 10.1039/C7EE01318C
Yu, 2021, Modulating Sand's time by ion-transport-enhancement toward dendrite-free lithium metal anode, Nano Res.
Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J
Parker, 2017, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion, Science, 356, 415, 10.1126/science.aak9991
Yu, 2022, Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2Tx composite anodes, J. Energy Chem., 65, 654, 10.1016/j.jechem.2021.07.008
Bozzini, 2020, Morphological evolution of Zn-Sponge electrodes monitored by in situ X-ray computed microtomography, ACS Appl. Energy Mater., 3, 4931, 10.1021/acsaem.0c00489
Sun, 2021, Intermetallic interphases in lithium metal and lithium ion batteries, InfoMat, 3, 1083, 10.1002/inf2.12216
Dong, 2018, Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Mater., 13, 96, 10.1016/j.ensm.2018.01.003
Naveed, 2019, Highly reversible and safe Zn rechargeable batteries based on triethyl phosphate electrolyte, Angew. Chem. Int. Ed., 58, 2760, 10.1002/anie.201813223
Rojaee, 2021, Interfacial engineering of lithium-polymer batteries with in situ UV cross-linking, InfoMat, 3, 1016, 10.1002/inf2.12197
Kim, 2013, Metallic anodes for next generation secondary batteries, Chem. Soc. Rev., 42, 9011, 10.1039/c3cs60177c
Zeng, 2020, Enabling an intrinsically safe and high-energy-density 4.5V-class Li-ion battery with nonflammable electrolyte, InfoMat, 2, 984, 10.1002/inf2.12089
Simons, 2015, Zn electrochemistry in 1-ethyl-3-methylimidazolium and N-butyl-N-methylpyrrolidinium dicyanamides: promising new rechargeable Zn battery electrolytes, ChemElectroChem, 1, 1688, 10.1002/celc.201402177
Zheng, 2019, Reversible epitaxial electrodeposition of metals in battery anodes, Science, 366, 645, 10.1126/science.aax6873
Finegan, 2015, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nat. Commun., 6, 6924, 10.1038/ncomms7924
Zhang, 2021, Design aspects of electrolytes for fast charge of Li-ion batteries, InfoMat, 3, 125, 10.1002/inf2.12159
Yamamoto, 1986, Rechargeable Zn|ZnSO4|MnO2-type cells, Inorg. Chim. Acta, 117, L27, 10.1016/S0020-1693(00)82175-1
Fei, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
Mainar, 2017, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, J. Energy Storage, 15, 304, 10.1016/j.est.2017.12.004
Chu, 2021, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14, 3609, 10.1039/D1EE00308A
Zhang, 2018, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anodeElectronic supplementary information (ESI) available, ChemCommun, 54, 14097
Parker, 2014, Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling, Energy Environ. Sci., 7, 1117, 10.1039/C3EE43754J
Han, 2014, Over-limiting current and control of dendritic growth by surface conduction in nanopores, Sci. Rep., 4, 7056, 10.1038/srep07056
He, 2013, Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12, Dalton Trans., 42, 16608, 10.1039/c3dt52103f
Yuksel, 2020, Metal-organic framework integrated anodes for aqueous zinc-ion batteries, Adv. Energy Mater., 10, 10.1002/aenm.201904215
Liu, 2020, A novel imidazole-based tri-nitrogen metal cations probe with better-selectivity in ionic radius and acting as a Zn2+ fluorescence turn-on sensor, J. Mol. Struct., 1222, 10.1016/j.molstruc.2020.128909
Zhao, 2020, Development of flexible Li-ion batteries for flexible electronics, InfoMat, 2, 866, 10.1002/inf2.12117
Rudolph, 1999, Raman spectroscopy of aqueous ZnSO4 solutions under hydrothermal conditions: solubility, hydrolysis, and sulfate ion pairing, J. Sol. Chem., 28, 621, 10.1023/A:1022691117630
Rudolph, 1999, Raman- and infrared spectroscopic investigation of aqueous ZnSO4 solutions from 8°C to 165°C: inner-and outer-sphere complexes, Z. Phys. Chem., 209, 181, 10.1524/zpch.1999.209.Part_2.181
Rudolph, 1999, Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab-initio molecular orbital study, Phys. Chem. Chem. Phys., 1, 4583, 10.1039/a904051j
Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844
Aly, 2018, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries, ChemElectroChem, 5, 2409, 10.1002/celc.201800572
Qiao, 2019, A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion, Nat. Catal., 2, 1035, 10.1038/s41929-019-0362-z
Kundu, 2016, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119
Li, 2018, Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects, Nat. Energy, 3, 1076, 10.1038/s41560-018-0276-z
Lei, 2019, Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries, Joule, 3, 303, 10.1016/j.joule.2018.12.016
Blanc, 2020, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4, 771, 10.1016/j.joule.2020.03.002
Ren, 2022, Optimized orbital occupancy of transition metal in spinel Ni-Co oxides with heteroatom doping for aprotic Li-O2 battery, Chem. Eng. J., 30
Hu, 2021, An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode, Energy Environ. Sci., 14, 4115, 10.1039/D1EE00508A
Tvta, 2020, Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology, J. Environ. Chem. Eng., 8
Chen, 2019, Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole, Mikrochim. Acta, 186, 623, 10.1007/s00604-019-3737-6
He, 2021, Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries, Green Energy Environ.
Ballesteros, 2007, Zinc electrodeposition in the presence of polyethylene glycol 20000, Electrochim. Acta, 52, 3686, 10.1016/j.electacta.2006.10.042
Chen, 2019, Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition, Nat. Commun., 10, 4973, 10.1038/s41467-019-12952-6
Zhi, 2010, Biomolecule-guided cation regulation for dendrite-free metal anodes, Sci. Adv., 6, eabb1342, 10.1126/sciadv.abb1342
Trejo, 2001, Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions, J. Appl. Electrochem., 31, 685, 10.1023/A:1017580025961
Han, 2016, Dendrite suppression by shock electrodeposition in charged porous media, Sci. Rep., 6, 28054, 10.1038/srep28054
Deng, 2013, Overlimiting current and shock electrodialysis in porous media, Langmuir, 29, 16167, 10.1021/la4040547
Mani, 2011, Deionization shocks in microstructures, Phys. Rev. E, 84, 10.1103/PhysRevE.84.061504
Schlumpberger, 2015, Scalable and continuous water deionization by shock electrodialysis, Environ. Sci. Technol. Lett., 2, 367, 10.1021/acs.estlett.5b00303
Zeng, 2021, Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30mA cm−2 and 30mA h cm−2, Energy Environ. Sci., 10.1039/D1EE01851E
Liu, 2021, Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries, Adv. Funct. Mater., 31
Zeng, 2021, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions, Adv. Mater., 33, 10.1002/adma.202007416
Zeng, 2020, Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry, Adv. Energy Mater., 10, 10.1002/aenm.201904163
Etacheri, 2021, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b
Hao, 2020, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries, Energy Environ. Sci., 13, 3917, 10.1039/D0EE02162H
Chu, 2021, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14, 3609, 10.1039/D1EE00308A
Wang, 2019, A metal-organic framework host for highly reversible dendrite-free zinc metal anodes, Joule, 3, 1289, 10.1016/j.joule.2019.02.012
Tian, 2019, Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and non-aqueous lithium metal batteries, ACS Nano, 13, 11676, 10.1021/acsnano.9b05599
Cui, 2020, An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes, Angew. Chem. Int. Ed., 59, 16594, 10.1002/anie.202005472
Zhao, 2019, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12, 1938, 10.1039/C9EE00596J
Xie, 2020, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy Environ. Sci., 13, 503, 10.1039/C9EE03545A
Ma, 2021, Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33
Zhang, 2021, Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode, Angew. Chem. Int. Ed., 60, 23357, 10.1002/anie.202109682
Zhang, 2021, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14, 3120, 10.1039/D0EE03898A
Yan, 2021, Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive, Nano Energy, 82, 10.1016/j.nanoen.2020.105739