Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer

Energy Storage Materials - Tập 44 - Trang 452-460 - 2022
Miao He1, Chaozhu Shu1, Anjun Hu2, Ruixing Zheng1, MingLu Li1, ZhiQun Ran1, Jianping Long1
1College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China

Tài liệu tham khảo

Goodenough, 2018, How we made the Li-ion rechargeable battery, Nat. Electron., 1, 204, 10.1038/s41928-018-0048-6 Goodenough, 2011, Challenges for rechargeable batteries, J. Power Sources, 196, 6688, 10.1016/j.jpowsour.2010.11.074 Steingart, 2018, V. Comment on "Alternative strategy for a safe rechargeable battery" by M. H. Braga, N. S. Grundish, A. J. Murchison and J. B. Goodenough, Energy Environ. Sci., 11, 221, 10.1039/C7EE01318C Yu, 2021, Modulating Sand's time by ion-transport-enhancement toward dendrite-free lithium metal anode, Nano Res. Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J Parker, 2017, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion, Science, 356, 415, 10.1126/science.aak9991 Yu, 2022, Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2Tx composite anodes, J. Energy Chem., 65, 654, 10.1016/j.jechem.2021.07.008 Bozzini, 2020, Morphological evolution of Zn-Sponge electrodes monitored by in situ X-ray computed microtomography, ACS Appl. Energy Mater., 3, 4931, 10.1021/acsaem.0c00489 Sun, 2021, Intermetallic interphases in lithium metal and lithium ion batteries, InfoMat, 3, 1083, 10.1002/inf2.12216 Dong, 2018, Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Mater., 13, 96, 10.1016/j.ensm.2018.01.003 Naveed, 2019, Highly reversible and safe Zn rechargeable batteries based on triethyl phosphate electrolyte, Angew. Chem. Int. Ed., 58, 2760, 10.1002/anie.201813223 Rojaee, 2021, Interfacial engineering of lithium-polymer batteries with in situ UV cross-linking, InfoMat, 3, 1016, 10.1002/inf2.12197 Kim, 2013, Metallic anodes for next generation secondary batteries, Chem. Soc. Rev., 42, 9011, 10.1039/c3cs60177c Zeng, 2020, Enabling an intrinsically safe and high-energy-density 4.5V-class Li-ion battery with nonflammable electrolyte, InfoMat, 2, 984, 10.1002/inf2.12089 Simons, 2015, Zn electrochemistry in 1-ethyl-3-methylimidazolium and N-butyl-N-methylpyrrolidinium dicyanamides: promising new rechargeable Zn battery electrolytes, ChemElectroChem, 1, 1688, 10.1002/celc.201402177 Zheng, 2019, Reversible epitaxial electrodeposition of metals in battery anodes, Science, 366, 645, 10.1126/science.aax6873 Finegan, 2015, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nat. Commun., 6, 6924, 10.1038/ncomms7924 Zhang, 2021, Design aspects of electrolytes for fast charge of Li-ion batteries, InfoMat, 3, 125, 10.1002/inf2.12159 Yamamoto, 1986, Rechargeable Zn|ZnSO4|MnO2-type cells, Inorg. Chim. Acta, 117, L27, 10.1016/S0020-1693(00)82175-1 Fei, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z Mainar, 2017, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, J. Energy Storage, 15, 304, 10.1016/j.est.2017.12.004 Chu, 2021, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14, 3609, 10.1039/D1EE00308A Zhang, 2018, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anodeElectronic supplementary information (ESI) available, ChemCommun, 54, 14097 Parker, 2014, Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling, Energy Environ. Sci., 7, 1117, 10.1039/C3EE43754J Han, 2014, Over-limiting current and control of dendritic growth by surface conduction in nanopores, Sci. Rep., 4, 7056, 10.1038/srep07056 He, 2013, Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12, Dalton Trans., 42, 16608, 10.1039/c3dt52103f Yuksel, 2020, Metal-organic framework integrated anodes for aqueous zinc-ion batteries, Adv. Energy Mater., 10, 10.1002/aenm.201904215 Liu, 2020, A novel imidazole-based tri-nitrogen metal cations probe with better-selectivity in ionic radius and acting as a Zn2+ fluorescence turn-on sensor, J. Mol. Struct., 1222, 10.1016/j.molstruc.2020.128909 Zhao, 2020, Development of flexible Li-ion batteries for flexible electronics, InfoMat, 2, 866, 10.1002/inf2.12117 Rudolph, 1999, Raman spectroscopy of aqueous ZnSO4 solutions under hydrothermal conditions: solubility, hydrolysis, and sulfate ion pairing, J. Sol. Chem., 28, 621, 10.1023/A:1022691117630 Rudolph, 1999, Raman- and infrared spectroscopic investigation of aqueous ZnSO4 solutions from 8°C to 165°C: inner-and outer-sphere complexes, Z. Phys. Chem., 209, 181, 10.1524/zpch.1999.209.Part_2.181 Rudolph, 1999, Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab-initio molecular orbital study, Phys. Chem. Chem. Phys., 1, 4583, 10.1039/a904051j Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844 Aly, 2018, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries, ChemElectroChem, 5, 2409, 10.1002/celc.201800572 Qiao, 2019, A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion, Nat. Catal., 2, 1035, 10.1038/s41929-019-0362-z Kundu, 2016, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119 Li, 2018, Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects, Nat. Energy, 3, 1076, 10.1038/s41560-018-0276-z Lei, 2019, Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries, Joule, 3, 303, 10.1016/j.joule.2018.12.016 Blanc, 2020, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4, 771, 10.1016/j.joule.2020.03.002 Ren, 2022, Optimized orbital occupancy of transition metal in spinel Ni-Co oxides with heteroatom doping for aprotic Li-O2 battery, Chem. Eng. J., 30 Hu, 2021, An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode, Energy Environ. Sci., 14, 4115, 10.1039/D1EE00508A Tvta, 2020, Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology, J. Environ. Chem. Eng., 8 Chen, 2019, Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole, Mikrochim. Acta, 186, 623, 10.1007/s00604-019-3737-6 He, 2021, Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries, Green Energy Environ. Ballesteros, 2007, Zinc electrodeposition in the presence of polyethylene glycol 20000, Electrochim. Acta, 52, 3686, 10.1016/j.electacta.2006.10.042 Chen, 2019, Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition, Nat. Commun., 10, 4973, 10.1038/s41467-019-12952-6 Zhi, 2010, Biomolecule-guided cation regulation for dendrite-free metal anodes, Sci. Adv., 6, eabb1342, 10.1126/sciadv.abb1342 Trejo, 2001, Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions, J. Appl. Electrochem., 31, 685, 10.1023/A:1017580025961 Han, 2016, Dendrite suppression by shock electrodeposition in charged porous media, Sci. Rep., 6, 28054, 10.1038/srep28054 Deng, 2013, Overlimiting current and shock electrodialysis in porous media, Langmuir, 29, 16167, 10.1021/la4040547 Mani, 2011, Deionization shocks in microstructures, Phys. Rev. E, 84, 10.1103/PhysRevE.84.061504 Schlumpberger, 2015, Scalable and continuous water deionization by shock electrodialysis, Environ. Sci. Technol. Lett., 2, 367, 10.1021/acs.estlett.5b00303 Zeng, 2021, Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30mA cm−2 and 30mA h cm−2, Energy Environ. Sci., 10.1039/D1EE01851E Liu, 2021, Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries, Adv. Funct. Mater., 31 Zeng, 2021, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions, Adv. Mater., 33, 10.1002/adma.202007416 Zeng, 2020, Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry, Adv. Energy Mater., 10, 10.1002/aenm.201904163 Etacheri, 2021, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b Hao, 2020, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries, Energy Environ. Sci., 13, 3917, 10.1039/D0EE02162H Chu, 2021, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14, 3609, 10.1039/D1EE00308A Wang, 2019, A metal-organic framework host for highly reversible dendrite-free zinc metal anodes, Joule, 3, 1289, 10.1016/j.joule.2019.02.012 Tian, 2019, Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and non-aqueous lithium metal batteries, ACS Nano, 13, 11676, 10.1021/acsnano.9b05599 Cui, 2020, An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes, Angew. Chem. Int. Ed., 59, 16594, 10.1002/anie.202005472 Zhao, 2019, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12, 1938, 10.1039/C9EE00596J Xie, 2020, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy Environ. Sci., 13, 503, 10.1039/C9EE03545A Ma, 2021, Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33 Zhang, 2021, Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode, Angew. Chem. Int. Ed., 60, 23357, 10.1002/anie.202109682 Zhang, 2021, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14, 3120, 10.1039/D0EE03898A Yan, 2021, Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive, Nano Energy, 82, 10.1016/j.nanoen.2020.105739