Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%

eScience - Tập 2 - Trang 339-346 - 2022
Sanlong Wang1,2,3,4,5, Pengyang Wang1,2,3,4,5, Bingbing Chen1,2,3,4,5, Renjie Li1,2,3,4,5, Ningyu Ren1,2,3,4,5, Yucheng Li1,2,3,4,5, Biao Shi1,2,3,4,5, Qian Huang1,2,3,4,5, Ying Zhao1,2,3,4,5, Michael Grätzel1,6, Xiaodan Zhang1,2,3,4,5
1Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, PR China
2Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China
3Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
4Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China
5Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
6Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland

Tài liệu tham khảo

Yoo, 2021, Efficient perovskite solar cells via improved carrier management, Nature, 590, 587, 10.1038/s41586-021-03285-w Jeong, 2021, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature, 592, 381, 10.1038/s41586-021-03406-5 Jiang, 2019, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics, 13, 460, 10.1038/s41566-019-0398-2 Conings, 2015, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., 5, 10.1002/aenm.201500477 Ho-Baillie, 2019, Untapped potentials of inorganic metal halide perovskite solar cells, Joule, 3, 938, 10.1016/j.joule.2019.02.002 Eperon, 2015, Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem., 3, 19688, 10.1039/C5TA06398A Wang, 2018, Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells, Nat. Commun., 9, 2225, 10.1038/s41467-018-04636-4 Yu, 2021, Efficient (>20%) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts, Angew. Chem. Int. Ed., 60, 13436, 10.1002/anie.202102466 Gu, 2021, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells, Angew. Chem. Int. Ed., 60, 23164, 10.1002/anie.202109724 Li, 2018, Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells, Nat. Commun., 9, 1076, 10.1038/s41467-018-03169-0 Liu, 2020, α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells, Adv. Mater., 32 Wang, 2018, Efficient α-CsPbI3 photovoltaics with surface terminated organic cations, Joule, 2, 2065, 10.1016/j.joule.2018.06.013 Zhao, 2020, Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V, Nano Energy, 67, 10.1016/j.nanoen.2019.104286 Tong, 2019, Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells, Nano Energy, 65, 10.1016/j.nanoen.2019.104015 Han, 2018, High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells, Science, 361, 904, 10.1126/science.aat5055 Han, 2020, Controlled n-doping in air-stable cspbi2br perovskite solar cells with a record efficiency of 16.79, Adv. Funct. Mater., 30, 10.1002/adfm.201909972 Hou, 2020, Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon, Science, 367, 1135, 10.1126/science.aaz3691 Al-Ashouri, 2020, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science, 370, 1300, 10.1126/science.abd4016 Ye, 2019, Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination, Adv. Mater., 31, 10.1002/adma.201905143 Tian, 2019, Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability, Adv. Mater., 31, 10.1002/adma.201901152 Zhang, 2020, I/P interface modification for stable and efficient perovskite solar cells, J. Semiconduct., 41, 52202, 10.1088/1674-4926/41/5/052202 Jiang, 2017, Planar-structure perovskite solar cells with efficiency beyond 21, Adv. Mater., 29, 10.1002/adma.201703852 Yang, 2019, Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts, Science, 365, 473, 10.1126/science.aax3294 Wu, 2020, Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells, J. Am. Chem. Soc., 142, 3989, 10.1021/jacs.9b13418 Yang, 2017, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells, Science, 356, 1376, 10.1126/science.aan2301 Zhang, 2020, Guanidinium passivation for air-stable rubidium-incorporated Cs(1 − x)RbxPbI2Br inorganic perovskite solar cells, Sol. RRL, 4, 10.1002/solr.202000112 Xu, 2019, Minimizing voltage loss in efficient all-inorganic cspbi2br perovskite solar cells through energy level alignment, ACS Energy Lett., 4, 2491, 10.1021/acsenergylett.9b01662 Wang, 2019, The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?, Angew. Chem. Int. Ed., 131, 16844, 10.1002/ange.201910800 Wang, 2018, Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics, J. Am. Chem. Soc., 140, 12345, 10.1021/jacs.8b07927 Wang, 2022, 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24, Nano Energy, 94, 10.1016/j.nanoen.2021.106914 Ye, 2019, Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination, Adv. Mater., 31, 10.1002/adma.201905143 Zheng, 2018, High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation, Adv. Funct. Mater., 30 Wang, 2021, Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V, ACS Energy Lett., 6, 2121, 10.1021/acsenergylett.1c00443 Ni, 2020, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells, Science, 367, 1352, 10.1126/science.aba0893 Chen, 2019, Imperfections and their passivation in halide perovskite solar cells, Chem. Soc. Rev., 48, 3842, 10.1039/C8CS00853A Liu, 2020, Incorporation of nickel ions to enhance integrity and stability of perovskite crystal lattice for high-performance planar heterojunction solar cells, ACS Appl. Mater. Interfaces, 12, 904, 10.1021/acsami.9b19330 Zhu, 2021, Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24, J. Am. Chem. Soc., 143, 3231, 10.1021/jacs.0c12802 Li, 2019, NiOx/Spiro hole transport bilayers for stable perovskite solar cells with efficiency exceeding 21, ACS Energy Lett., 5, 79, 10.1021/acsenergylett.9b02112 Wang, 2018, Energy level alignment at interfaces in metal halide perovskite solar cells, Adv. Mater. Interfaces, 5, 10.1002/admi.201800260 Su, 2020, Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells, J. Am. Chem. Soc., 142, 19980, 10.1021/jacs.0c08592 Guo, 2020, VOC over 1.4 V for amorphous tin-oxide-based dopant-free CsPbI2Br perovskite solar cells, J. Am. Chem. Soc., 142, 9725, 10.1021/jacs.0c02227 Jang, 2021, Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth, Nat. Energy, 6, 63, 10.1038/s41560-020-00749-7 Jošt, 2020, Monolithic Perovskite Tandem Solar Cells: a review of the present status and advanced characterization methods toward 30% efficiency, Adv. Energy Mater., 10, 10.1002/aenm.201904102